Lock类-ReentrantLock的使用
在Java多线程中可以使用synchronized隐式锁实现线程之间同步互斥,Java5中提供了Lock类(显示锁)也可以实现线程间的同步,而且在使用上更加方便。本文主要研究 ReentrantLock的使用。
公平锁与非公平锁:公平锁表示线程获取锁的顺序是按照线程加锁的顺序来分配的,即先来先得的FIFO顺序。而非公平锁就是一种获取锁的抢占机制,是随机获得锁的,和公平锁不一样的就是先来的不一定先得到锁,这个方式可能造成某些线程一直拿不到锁。从这个角度讲,synchronized其实就是一种非公平锁。
ReentrantLock也是一种可重入锁,类似于synchronized,也就是在拥有锁的情况下可以调用其它需要本锁的方法或者代码块。lock.getHoldCount()可以获得当前线程拥有锁的层数,可以理解为重入了几层。当为0的时候代表当前线程没有占用锁,每重入一次count就加1.
ReentrantLock具有嗅探锁定、多线路分路通知等功能,而且在使用上比synchronized更加灵活。功能上与synchronized一样实现了线程的互斥性与内存的可见性。
1 ReentrantLock的基本使用方法
调用其lock()方法会占用锁,调用unlock()会释放锁,但是需要注意必须手动unlock释放锁,否则其他线程会永远阻塞。而且发生异常不会自动释放锁,所以编写程序的时候需要在finally中手动释放锁。
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * ReentrantLock的基本使用方法 * @author Administrator * */ public class Demo1 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo1.class); private Lock lock = new ReentrantLock(); public void testMethod(){ try { LOGGER.info("threadName -> {} enter testMethod",Thread.currentThread().getName()); lock.lock(); LOGGER.info("threadName -> {} lock",Thread.currentThread().getName()); Thread.sleep(2*1000); LOGGER.info("threadName -> {} unlock",Thread.currentThread().getName()); lock.unlock(); LOGGER.info("threadName -> {} exit testMethod",Thread.currentThread().getName()); } catch (InterruptedException e) { e.printStackTrace(); } } public static void main(String[] args) { final Demo1 demo1 = new Demo1(); new Thread(new Runnable() { @Override public void run() { demo1.testMethod(); } },"threadA").start(); new Thread(new Runnable() { @Override public void run() { demo1.testMethod(); } },"threadB").start(); } }
结果:(实现了线程之间的互斥同步,threadB释放锁之后threadA才进入Lock,类似于synchronized同步锁的执行效果)
10:10:37 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadB enter testMethod
10:10:37 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadA enter testMethod
10:10:37 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadB lock
10:10:39 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadB unlock
10:10:39 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadB exit testMethod
10:10:39 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadA lock
10:10:41 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadA unlock
10:10:41 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadA exit testMethod
测试异常发生不会释放锁:修改上面占用锁的方法
public void testMethod(){ try { LOGGER.info("threadName -> {} enter testMethod",Thread.currentThread().getName()); lock.lock(); int i =1/0; LOGGER.info("threadName -> {} lock",Thread.currentThread().getName()); Thread.sleep(2*1000); LOGGER.info("threadName -> {} unlock",Thread.currentThread().getName()); lock.unlock(); LOGGER.info("threadName -> {} exit testMethod",Thread.currentThread().getName()); } catch (InterruptedException e) { e.printStackTrace(); } }
结果:(线程B中执行int i=1/0发生算数异常,但是没有释放锁,所以threadA也一直处于阻塞状态。)
正确的用法:finally中释放锁
public void testMethod(){ try { LOGGER.info("threadName -> {} enter testMethod",Thread.currentThread().getName()); lock.lock(); int i =1/0; LOGGER.info("threadName -> {} lock",Thread.currentThread().getName()); Thread.sleep(2*1000); } catch (InterruptedException e) { e.printStackTrace(); }finally { LOGGER.info("threadName -> {} unlock",Thread.currentThread().getName()); lock.unlock(); } LOGGER.info("threadName -> {} exit testMethod",Thread.currentThread().getName()); }
结果: (两个线程都发生算数异常,证明两个线程都可以占用锁,也就是锁被成功的释放)
2 使用Condition实现等待/通知
关键字synchronized与wait()/notify()、notifyAll()方法相结合可以实现等待/通知模式,类ReentrantLock也可以实现类似的功能,但需要借助于Condition对象。Condition类是JDK5中出现的类,使用它有更好的灵活性,比如可以实现多路通知功能,也就是在一个Lock对象里面可以创建多个Condition(即对象监视器实例),线程对象可以注册在指定的Condition中,从而可以有选择性地进行线程通知,在调度线程上更加灵活。
在使用notify()/notifyAll()方法进行通知时,被通知的线程却是由JVM随机选择的。但使用ReentrantLock结合Condition类是可以实现前面介绍过的"选择性通知",这个功能是非常重要的,而且在Condition类中是默认提供的。
而synchronized就相当于整个Lock对象中只有一个单一的Condition对象,所有的线程都注册在它一个对象的身上。线程开始notifyAll()时,需要通知所有的WATING线程,没有选择权,会出现相当大的效率问题。
例如:一个简单的等待/通知的例子
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * ReentrantLock結合Condition实现等待/通知 * * @author Administrator * */ public class Demo2 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo2.class); private Lock lock = new ReentrantLock(); private Condition condition1 = lock.newCondition(); public void await() { try { lock.lock(); LOGGER.info("threadName -> {} start await", Thread.currentThread().getName()); condition1.await(); LOGGER.info("threadName -> {} end await", Thread.currentThread().getName()); } catch (InterruptedException e) { e.printStackTrace(); } finally { LOGGER.info("threadName -> {} unlock", Thread.currentThread().getName()); lock.unlock(); } LOGGER.info("threadName -> {} exit await 退出await方法", Thread.currentThread().getName()); } public void signal() { try { lock.lock(); LOGGER.info("threadName -> {} start signal", Thread.currentThread().getName()); condition1.signal(); LOGGER.info("threadName -> {} end signal", Thread.currentThread().getName()); } catch (Exception e) { e.printStackTrace(); } finally { LOGGER.info("threadName -> {} unlock", Thread.currentThread().getName()); lock.unlock(); } LOGGER.info("exit signal 退出signal方法"); } public static void main(String[] args) { final Demo2 demo2 = new Demo2(); new Thread(new Runnable() { @Override public void run() { demo2.await(); } }, "threadA").start(); new Thread(new Runnable() { @Override public void run() { demo2.signal(); } }, "threadB").start(); } }
结果:
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadA start await
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadB start signal
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadB end signal
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadB unlock
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] exit signal 退出signal方法
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadA end await
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadA unlock
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadA exit await 退出await方法
注意:
condition对象的await()\signal()\signalAll()必须在获得lock.lock()占用锁之后调用,而且最后必须手动释放锁。
Object的wait()方法相当于Condition的await()方法,会释放锁;
Object的wait(long)方法相当于Condition类的await(long)方法,可以指定多少秒后自动唤醒转入对象监视器的就绪队列;
Object类的notify()方法相当于Condition的signal()方法,Object的notifyAll()方法相当于Condition类的signalAll()方法。
3 使用多个Condition实现等待/通知部分线程
使用ReentrantLock创建多个Condition对象之后可以实现唤醒指定的线程,这是控制部分线程行为的方便方式。可以理解为将线程分组,每一组对应一个condition对象。
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * ReentrantLock結合Condition实现等待/通知,唤醒和等待部分线程 * * @author Administrator * */ public class Demo3 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo3.class); private Lock lock = new ReentrantLock(); private Condition conditionA = lock.newCondition(); private Condition conditionB = lock.newCondition(); public void awaitA() { try { lock.lock(); LOGGER.info("threadName -> {} start await", Thread.currentThread().getName()); Thread.sleep(1 * 1000); conditionA.await(); LOGGER.info("threadName -> {} end await", Thread.currentThread().getName()); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public void signalA() { try { lock.lock(); LOGGER.info("threadName -> {} start signal", Thread.currentThread().getName()); Thread.sleep(1 * 1000); conditionA.signal(); LOGGER.info("threadName -> {} end signal", Thread.currentThread().getName()); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void awaitB() { try { lock.lock(); LOGGER.info("threadName -> {} start await", Thread.currentThread().getName()); Thread.sleep(1 * 1000); conditionB.await(); LOGGER.info("threadName -> {} end await", Thread.currentThread().getName()); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public void signalB() { try { lock.lock(); LOGGER.info("threadName -> {} start signal", Thread.currentThread().getName()); Thread.sleep(1 * 1000); conditionB.signal(); LOGGER.info("threadName -> {} end signal", Thread.currentThread().getName()); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) { final Demo3 demo3 = new Demo3(); new Thread(new Runnable() { @Override public void run() { demo3.awaitA(); } }, "threadA").start(); new Thread(new Runnable() { @Override public void run() { demo3.signalA(); } }, "threadA1").start(); // 访问conditionB new Thread(new Runnable() { @Override public void run() { demo3.awaitB(); } }, "threadB").start(); new Thread(new Runnable() { @Override public void run() { demo3.signalB(); } }, "threadB1").start(); } }
结果: (多个线程还是公用一个锁,但是可以用多个Condition实现阻塞与唤醒部分线程。也就是多个Condition将对象阻塞到多个队列中)
11:18:31 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadA start await
11:18:32 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadA1 start signal
11:18:33 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadA1 end signal
11:18:33 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadB start await
11:18:34 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadB1 start signal
11:18:35 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadB1 end signal
11:18:35 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadA end await
11:18:35 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadB end await
4 公平锁与非公平锁
公平锁与非公平锁:公平锁表示线程获取锁的顺序是按照线程加锁的顺序来分配的,即先来先得的FIFO顺序。而非公平锁就是一种获取锁的抢占机制,是随机获得锁的,和公平锁不一样的就是先来的不一定先得到锁,这个方式可能造成某些线程一直拿不到锁。从这个角度讲,synchronized其实就是一种非公平锁。
ReentrantLock类有一个单一参数的构造方法,接受boolean类型的数据,传入true表示创建的是公平锁,传入false创建的是非公平锁(不带参数的默认创建非公平锁)
public ReentrantLock() { sync = new NonfairSync(); } /** * Creates an instance of {@code ReentrantLock} with the * given fairness policy. * * @param fair {@code true} if this lock should use a fair ordering policy */ public ReentrantLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); }
(1)公平锁的测试:
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * 公平锁与非公平锁 * * @author Administrator * */ public class Demo5 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo5.class); private Lock lock = new ReentrantLock(true); public void testMethod() { try { lock.lock(); System.out.println("★ThreadName" + Thread.currentThread().getName() + "获得锁"); } finally { lock.unlock(); } } public static void main(String[] args) throws InterruptedException { final Demo5 demo5 = new Demo5(); Runnable runnable = new Runnable() { public void run() { System.out.println("☆线程" + Thread.currentThread().getName() + "运行了"); demo5.testMethod(); } }; Thread[] threads = new Thread[5]; for (int i = 0; i < 5; i++) threads[i] = new Thread(runnable); for (int i = 0; i < 5; i++) threads[i].start(); } }
结果: (先运行的先获得锁---只能说是基本上是FIFO,也并不是绝对的)
☆线程Thread-0运行了
☆线程Thread-4运行了
☆线程Thread-3运行了
☆线程Thread-2运行了
☆线程Thread-1运行了
★ThreadNameThread-0获得锁
★ThreadNameThread-4获得锁
★ThreadNameThread-3获得锁
★ThreadNameThread-2获得锁
★ThreadNameThread-1获得锁
(2)非公平锁的测试:
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * 公平锁与非公平锁 * * @author Administrator * */ public class Demo5 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo5.class); private Lock lock = new ReentrantLock(false); public void testMethod() { try { lock.lock(); System.out.println("★ThreadName" + Thread.currentThread().getName() + "获得锁"); } finally { lock.unlock(); } } public static void main(String[] args) throws InterruptedException { final Demo5 demo5 = new Demo5(); Runnable runnable = new Runnable() { public void run() { System.out.println("☆线程" + Thread.currentThread().getName() + "运行了"); demo5.testMethod(); } }; Thread[] threads = new Thread[5]; for (int i = 0; i < 5; i++) threads[i] = new Thread(runnable); for (int i = 0; i < 5; i++) threads[i].start(); } }
结果: (不一定先运行的先获得锁)
☆线程Thread-1运行了
☆线程Thread-2运行了
☆线程Thread-3运行了
☆线程Thread-0运行了
☆线程Thread-4运行了
★ThreadNameThread-2获得锁
★ThreadNameThread-3获得锁
★ThreadNameThread-0获得锁
★ThreadNameThread-4获得锁
★ThreadNameThread-1获得锁
5 使用condition实现线程按顺序执行
使用condition实现线程按顺序执行(比如创建10个线程,每个线程打印自己的名字,按照1-10打印)
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * 使用condition实现线程按顺序执行(比如创建10个线程,每个线程打印自己的名字,按照1-10打印) * * @author Administrator * */ public class Demo14 { private ReentrantLock lock = new ReentrantLock(); private Condition newCondition = lock.newCondition(); private static final Logger LOGGER = LoggerFactory.getLogger(Demo14.class); private volatile int currentNum = 1;// 标记当前线程执行到第几个线程 public void printName() { try { lock.lock(); while (!String.valueOf(currentNum).equals(Thread.currentThread().getName())) { newCondition.await(); } LOGGER.info("threadName - > {} ", Thread.currentThread().getName()); newCondition.signalAll(); currentNum++; } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) throws InterruptedException { final Demo14 demo8 = new Demo14(); Runnable runnable = new Runnable() { @Override public void run() { demo8.printName(); } }; Thread[] threads = new Thread[10]; for (int i = 0; i < 10; i++) { threads[i] = new Thread(runnable, (i + 1) + ""); } for (int i = 0; i < 10; i++) { threads[i].start(); } } }
结果:
6 其他方法研究
1. getHoldCount()、getQueueLength()方法、getWaitQueueLength(condition)方法
- getHoldCount() 返回当前线程保持此锁定的个数,也就是调用lock方法的此时,可以理解为重入锁的次数
- getQueueLength()方法 返回正等待此获取此锁定的线程的估计数,比如有5个线程,1个线程首先执行await(),那么在调用getQueueLength()方法后返回值是4,说明有4个线程等待lock的释放。(可以理解为等待锁的线程数)
package cn.qlq.thread.eleven; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * 其他方法研究 getQueueLength--返回正等待此获取此锁定的线程的估计数 * * @author Administrator * */ public class Demo6 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo6.class); private ReentrantLock lock = new ReentrantLock(true); public void testMethod() { try { lock.lock(); LOGGER.debug("testMethod lock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(), lock.getQueueLength()); // 调用testMethod2(),模拟锁重入 testMethod2(); } finally { lock.unlock(); LOGGER.debug("testMethod unlock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(), lock.getQueueLength()); } } public void testMethod2() { try { lock.lock(); LOGGER.debug("testMethod2 lock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(), lock.getQueueLength()); } finally { lock.unlock(); LOGGER.debug("testMethod2 unlock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(), lock.getQueueLength()); } } public void testMethod3() { try { lock.lock(); LOGGER.debug("testMethod3 lock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(), lock.getQueueLength()); } finally { lock.unlock(); LOGGER.debug("testMethod3 unlock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(), lock.getQueueLength()); } } public static void main(String[] args) throws InterruptedException { final Demo6 demo6 = new Demo6(); new Thread(new Runnable() { public void run() { demo6.testMethod(); } }, "thread--t1").start(); new Thread(new Runnable() { @Override public void run() { demo6.testMethod3(); } }, "thread--t2").start(); } }
结果:
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod lock,getHoldCount()->1,getQueueLength->1
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod2 lock,getHoldCount()->2,getQueueLength->1
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod2 unlock,getHoldCount()->1,getQueueLength->1
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod unlock,getHoldCount()->0,getQueueLength->1
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod3 lock,getHoldCount()->1,getQueueLength->0
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod3 unlock,getHoldCount()->0,getQueueLength->0
-
getWaitQueueLength(condition)方法返回此Condition对象阻塞队列的数量
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * @author Administrator * */ public class Demo7 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo7.class); private ReentrantLock lock = new ReentrantLock(); private Condition conditionA = lock.newCondition(); public void awaitA() { try { lock.lock(); Thread.sleep(1 * 1000); LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(), lock.getWaitQueueLength(conditionA)); conditionA.await(); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public void signalA() { try { lock.lock(); Thread.sleep(1 * 1000); LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(), lock.getWaitQueueLength(conditionA)); conditionA.signal(); LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(), lock.getWaitQueueLength(conditionA)); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) { final Demo7 demo7 = new Demo7(); Runnable await = new Runnable() { public void run() { demo7.awaitA(); } }; new Thread(await, "threadA1").start(); new Thread(await, "threadA2").start(); new Thread(await, "threadA3").start(); // 访问signal new Thread(new Runnable() { @Override public void run() { demo7.signalA(); } }, "threadS1").start(); } }
结果:
15:40:27 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA2,getWaitQueueLength(conditionA)->0
15:40:28 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA3,getWaitQueueLength(conditionA)->1
15:40:29 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA1,getWaitQueueLength(conditionA)->2
15:40:30 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadS1,getWaitQueueLength(conditionA)->3
15:40:30 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadS1,getWaitQueueLength(conditionA)->2
修改上面signalA的方法唤醒所有:
public void signalA() { try { lock.lock(); Thread.sleep(1 * 1000); LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(), lock.getWaitQueueLength(conditionA)); conditionA.signalAll(); LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(), lock.getWaitQueueLength(conditionA)); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } }
结果:
15:41:58 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA1,getWaitQueueLength(conditionA)->0
15:41:59 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA2,getWaitQueueLength(conditionA)->1
15:42:00 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA3,getWaitQueueLength(conditionA)->2
15:42:01 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadS1,getWaitQueueLength(conditionA)->3
15:42:01 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadS1,getWaitQueueLength(conditionA)->0
2.hasQueuedThreads()、 hasQueuedThread(thread)、lock.hasWaiters(conditionA)方法
- hasQueuedThreads() 方法返回此锁是否有线程在等待获取此锁
- hasQueuedThread(thread) 查询指定的线程是否正在等待获取此锁
- lock.hasWaiters(condition) 此方法必须在获取到lock(lock.lock())之后调用,查询指定的condition是否有等待的对象
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * @author Administrator * */ public class Demo8 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo8.class); private ReentrantLock lock = new ReentrantLock(); private Condition conditionA = lock.newCondition(); public void awaitA() { try { lock.lock(); Thread.sleep(1 * 1000); conditionA.await(); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public void signalA() { try { lock.lock(); Thread.sleep(1 * 1000); conditionA.signal(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) { final Demo8 demo8 = new Demo8(); Runnable await = new Runnable() { public void run() { demo8.awaitA(); } }; new Thread(await, "threadA2").start(); new Thread(await, "threadA3").start(); Thread thread = new Thread(await, "threadA1"); thread.start(); // 访问signal new Thread(new Runnable() { @Override public void run() { demo8.signalA(); } }, "threadS1").start(); // 返回thread是否在等待获取此锁 System.out.println(demo8.getLock().hasQueuedThread(thread)); // 获取是否有等待线程 System.out.println(demo8.getLock().hasQueuedThreads()); } public ReentrantLock getLock() { return lock; } public void setLock(ReentrantLock lock) { this.lock = lock; } }
结果:
false
true
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * @author Administrator * */ public class Demo9 { private static final Logger LOGGER = LoggerFactory.getLogger(Demo9.class); private ReentrantLock lock = new ReentrantLock(); private Condition conditionA = lock.newCondition(); public void awaitA() { try { lock.lock(); Thread.sleep(1 * 1000); conditionA.await(); } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public void signalA() { try { lock.lock(); Thread.sleep(1 * 1000); System.out.println(lock.hasWaiters(conditionA)); conditionA.signalAll(); System.out.println(lock.hasWaiters(conditionA)); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) { final Demo9 demo8 = new Demo9(); Runnable await = new Runnable() { public void run() { demo8.awaitA(); } }; Thread thread = new Thread(await, "threadA1"); thread.start(); new Thread(await, "threadA2").start(); new Thread(await, "threadA3").start(); // 访问signal new Thread(new Runnable() { @Override public void run() { demo8.signalA(); } }, "threadS1").start(); } }
结果:
true
false
3. isFair(),isLocked(),isHeldByCurrentThread()方法
- isFair() 判断一个锁是否是公平锁
- isLocked() 判断一个锁是否已经锁住,也就是判断是否被任意线程锁定
- isHeldByCurrentThread() 判断当前线程是否拥有指定的锁
package cn.qlq.thread.eleven; import java.util.concurrent.locks.ReentrantLock; /** * * @author Administrator * */ public class Demo10 { private ReentrantLock lock = new ReentrantLock(); public void awaitA() { lock.lock(); System.out.println("isFair -> " + lock.isFair()); System.out.println("isLocked -> " + lock.isLocked()); System.out.println("isHeldByCurrentThread -> " + lock.isHeldByCurrentThread()); lock.unlock(); } public ReentrantLock getLock() { return lock; } public void setLock(ReentrantLock lock) { this.lock = lock; } public static void main(String[] args) { final Demo10 demo8 = new Demo10(); demo8.awaitA(); } }
结果:
isFair -> false
isLocked -> true
isHeldByCurrentThread -> true
4. lockInterruptibly()、tryLock()、tryLock(long, TimeUnit)---轮询锁与定时锁
- lockInterruptibly()方法如果在获取锁的情况下如果收到中断信号会进入中断异常
package cn.qlq.thread.eleven; import java.util.concurrent.locks.ReentrantLock; /** * * @author Administrator * */ public class Demo11 { private ReentrantLock lock = new ReentrantLock(); public void awaitA() { try { lock.lockInterruptibly(); System.out.println("isFair -> " + lock.isFair()); System.out.println("isLocked -> " + lock.isLocked()); System.out.println("isHeldByCurrentThread -> " + lock.isHeldByCurrentThread()); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) { final Demo11 demo8 = new Demo11(); Thread thread = new Thread(new Runnable() { @Override public void run() { demo8.awaitA(); } }); thread.start(); // 发出中断信号 thread.interrupt(); } }
结果:
java.lang.InterruptedException
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1219)
at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:340)
at cn.qlq.thread.eleven.Demo11.awaitA(Demo11.java:15)
at cn.qlq.thread.eleven.Demo11$1.run(Demo11.java:31)
at java.lang.Thread.run(Thread.java:745)
Exception in thread "Thread-0" java.lang.IllegalMonitorStateException
at java.util.concurrent.locks.ReentrantLock$Sync.tryRelease(ReentrantLock.java:155)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.release(AbstractQueuedSynchronizer.java:1260)
at java.util.concurrent.locks.ReentrantLock.unlock(ReentrantLock.java:460)
at cn.qlq.thread.eleven.Demo11.awaitA(Demo11.java:22)
at cn.qlq.thread.eleven.Demo11$1.run(Demo11.java:31)
at java.lang.Thread.run(Thread.java:745)
如果不发出中断信号:
public static void main(String[] args) { final Demo11 demo8 = new Demo11(); Thread thread = new Thread(new Runnable() { @Override public void run() { demo8.awaitA(); } }); thread.start(); }
结果:
isFair -> false
isLocked -> true
isHeldByCurrentThread -> true
- tryLock可以获取有个仅仅没有被其他线程占用的锁,返回一个boolean类型的值代表是否获取锁成功
package cn.qlq.thread.eleven; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * @author Administrator * */ public class Demo11 { private ReentrantLock lock = new ReentrantLock(); private static final Logger LOGGER = LoggerFactory.getLogger(Demo11.class); public void awaitA() { if (lock.tryLock()) { LOGGER.info("threadName -> {} , isFair -> " + lock.isFair(), Thread.currentThread().getName()); LOGGER.info("threadName -> {} ,isLocked -> " + lock.isLocked(), Thread.currentThread().getName()); LOGGER.info("threadName -> {} ,isHeldByCurrentThread -> " + lock.isHeldByCurrentThread(), Thread.currentThread().getName()); lock.unlock(); } else { LOGGER.info("threadName -> {} 没有获得锁 ", Thread.currentThread().getName()); } } public static void main(String[] args) { final Demo11 demo8 = new Demo11(); Runnable runnable = new Runnable() { @Override public void run() { demo8.awaitA(); } }; Thread thread = new Thread(runnable, "thread"); Thread thread2 = new Thread(runnable, "thread2"); thread.start(); thread2.start(); } }
结果:
16:53:03 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread 没有获得锁
16:53:03 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 , isFair -> false
16:53:03 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 ,isLocked -> true
16:53:03 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 ,isHeldByCurrentThread -> true
- lock.tryLock(long, TimeUnit.MILLISECONDS) 如果锁定在给定等待时间内没有被另一个线程保持,且当前线程未被中断,则获取该锁定
package cn.qlq.thread.eleven; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * @author Administrator * */ public class Demo11 { private ReentrantLock lock = new ReentrantLock(); private static final Logger LOGGER = LoggerFactory.getLogger(Demo11.class); public void awaitA() { try { if (lock.tryLock(2000, TimeUnit.MILLISECONDS)) { LOGGER.info("threadName -> {} , isFair -> " + lock.isFair(), Thread.currentThread().getName()); LOGGER.info("threadName -> {} ,isLocked -> " + lock.isLocked(), Thread.currentThread().getName()); LOGGER.info("threadName -> {} ,isHeldByCurrentThread -> " + lock.isHeldByCurrentThread(), Thread.currentThread().getName()); // 释放锁 lock.unlock(); } else { LOGGER.info("threadName -> {} 没有获得锁 ", Thread.currentThread().getName()); } } catch (InterruptedException e) { e.printStackTrace(); } } public static void main(String[] args) { final Demo11 demo8 = new Demo11(); Runnable runnable = new Runnable() { @Override public void run() { demo8.awaitA(); } }; Thread thread = new Thread(runnable, "thread"); Thread thread2 = new Thread(runnable, "thread2"); thread.start(); thread2.start(); } }
结果:
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 , isFair -> false
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 ,isLocked -> true
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 ,isHeldByCurrentThread -> true
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread , isFair -> false
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread ,isLocked -> true
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread ,isHeldByCurrentThread -> true
5. Condition.awaitUninterruptibly()、Condition.awaitUntil(date)方法
- Condition.awaitUninterruptibly()是在await的过程中如果线程收到中断信号不会抛出异常(可中断的锁获取)
package cn.qlq.thread.eleven; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * @author Administrator * */ public class Demo12 { private ReentrantLock lock = new ReentrantLock(); private Condition newCondition = lock.newCondition(); private static final Logger LOGGER = LoggerFactory.getLogger(Demo12.class); public void awaitA() { LOGGER.info("threadName -> {} 进入方法,等待锁 ", Thread.currentThread().getName()); try { lock.lock(); LOGGER.info("threadName -> {} begain await ", Thread.currentThread().getName()); newCondition.awaitUninterruptibly(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) throws InterruptedException { final Demo12 demo8 = new Demo12(); Runnable runnable = new Runnable() { @Override public void run() { demo8.awaitA(); } }; Thread thread = new Thread(runnable, "thread"); Thread.sleep(1 * 1000); thread.interrupt(); } }
结果:
如果修改为await之后再次中断:
public void awaitA() { LOGGER.info("threadName -> {} 进入方法,等待锁 ", Thread.currentThread().getName()); try { lock.lock(); LOGGER.info("threadName -> {} begain await ", Thread.currentThread().getName()); newCondition.await(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } }
结果:
- Condition.awaitUntil(date)是停止到指定时间如果没有被唤醒自动唤醒
package cn.qlq.thread.eleven; import java.util.Date; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * * @author Administrator * */ public class Demo13 { private ReentrantLock lock = new ReentrantLock(); private Condition newCondition = lock.newCondition(); private static final Logger LOGGER = LoggerFactory.getLogger(Demo13.class); public void awaitA() { LOGGER.info("threadName -> {} 进入方法,等待锁 ", Thread.currentThread().getName()); try { lock.lock(); LOGGER.info("threadName -> {} begain await ", Thread.currentThread().getName()); Date deadline = new Date(); deadline.setSeconds(deadline.getSeconds() + 3); newCondition.awaitUntil(deadline); LOGGER.info("threadName -> {} end await ", Thread.currentThread().getName()); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public static void main(String[] args) throws InterruptedException { final Demo13 demo8 = new Demo13(); Runnable runnable = new Runnable() { @Override public void run() { demo8.awaitA(); } }; Thread thread = new Thread(runnable, "thread"); thread.start(); } }
结果: (3秒钟后自己唤醒,这个方法是停止到某一时间点)
17:16:18 [cn.qlq.thread.eleven.Demo13]-[INFO] threadName -> thread 进入方法,等待锁
17:16:18 [cn.qlq.thread.eleven.Demo13]-[INFO] threadName -> thread begain await
17:16:21 [cn.qlq.thread.eleven.Demo13]-[INFO] threadName -> thread end await
总结: 关于Lock和Synchronized两种同步方式的比较:
1.性能方面,两者实际是差不多的,JVM不断的对synchronized进行优化,所以性能基本没多大差别
2.synchronized是关键字,就和if...else...一样,是语法层面的实现,因此synchronized获取锁以及释放锁都是Java虚拟机帮助用户完成的;ReentrantLock是类层面的实现,因此锁的获取以及锁的释放都需要用户自己去操作。而且synchronized遇到错误会释放锁,而ReentrantLock不会自动释放。类和关键字最大的区别就是类使用更加灵活。
3.synchronized是不公平锁,而ReentrantLock可以指定锁是公平的还是非公平的。公平和非公平体现的就是获取锁的顺序是否是FIFO的顺序获取。
4.synchronized实现等待/通知机制通知的线程是随机的,ReentrantLock结合Condition可以实现等待/通知机制可以有选择性地通知,这点有时候便于理解。
5.和synchronized相比,ReentrantLock提供给用户多种方法用于锁信息的获取,比如可以获取是否有线程在等待锁、锁重入的层数等信息;而且显示锁增加了可中断的锁获取方式,以及tryLock轮询锁或者定时锁等方法
学习完ReentrantLock+Condition的使用之后可以完成一个简单的生产者消费者的例子,参考我的另一篇:https://www.cnblogs.com/qlqwjy/p/10115756.html
补充:重入锁也可能造成死锁:
package Thread; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * 测试死锁 思路:两个线程,每个线程占有不同的资源,等待其他资源 * * @author: qlq * @date : 2018年6月14日上午10:37:24 */ public class DeadLockTest1 { public static void main(String[] args) { Lock lock1 = new ReentrantLock(); Lock lock2 = new ReentrantLock(); MyThread1 t1 = new MyThread1(true,lock1,lock2); MyThread1 t2 = new MyThread1(false,lock1,lock2); t1.start(); t2.start(); } } class MyThread1 extends Thread { private boolean flag;// 标记走哪个线路 private Lock lock1;//第一把锁 private Lock lock2;//第二把锁 public boolean isFlag() { return flag; } public void setFlag(boolean flag) { this.flag = flag; } protected MyThread1(boolean flag, Lock lock1, Lock lock2) { super(); this.flag = flag; this.lock1 = lock1; this.lock2 = lock2; } @Override public void run() { if (flag) {// 占有资源A,等待资源B if(lock1.tryLock()){ try { Thread.sleep(2*1000); } catch (InterruptedException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } System.out.println(Thread.currentThread().getName()+"占有第一把锁,等待第二把锁"); try { if(lock2.tryLock(50*1000,TimeUnit.SECONDS)){ try { Thread.sleep(2*1000); System.out.println(Thread.currentThread().getName()+"占有第二把锁"); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+"释放第二把锁"); lock2.unlock(); System.out.println(Thread.currentThread().getName()+"释放第一把锁"); lock1.unlock(); } } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } else {// 占有第二把锁,等待第一把锁 if(lock2.tryLock()){ try { Thread.sleep(2*1000); } catch (InterruptedException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } System.out.println(Thread.currentThread().getName()+"占有第二把锁,等待第一把锁"); try { if(lock1.tryLock(50*1000,TimeUnit.SECONDS)){ try { Thread.sleep(2*1000); System.out.println(Thread.currentThread().getName()+"占有第一把锁"); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+"释放第一把锁"); lock1.unlock(); System.out.println(Thread.currentThread().getName()+"释放第二把锁"); lock2.unlock(); } } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } } }
结果:
Thread-0占有第一把锁,等待第二把锁
Thread-1占有第二把锁,等待第一把锁
解决办法:在正确的地方释放锁。。。。
注意:锁必须是同一把锁才会生效,如果锁作为局部变量是不会生效的,局部变量是每个线程一把锁。。。。。
补充: ReentrantLock 与 Synchronized 的区别
重入锁(ReentrantLock)是Lock接口最常见的一种实现,顾名思义,它与synchronized一样是可重入的。在基本用法上,ReentrantLock也与synchronized很相似,只是代码写法上稍有区别而已。不 过,ReentrantLock与synchronized相比增加了一些高级功能,主要有以下三项:等待可中断、可实现公平锁及锁可以绑定多个条件。
·等待可中断:是指当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改 为处理其他事情。可中断特性对处理执行时间非常长的同步块很有帮助。
·公平锁:是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁;而非公平锁则不保证这一点,在锁被释放时,任何一个等待锁的线程都有机会获得锁。synchronized中的锁是非 公平的,ReentrantLock在默认情况下也是非
平的,但可以通过带布尔值的构造函数要求使用公平 锁。不过一旦使用了公平锁,将会导致ReentrantLock的性能急剧下降,会明显影响吞吐量。
·锁绑定多个条件:是指一个ReentrantLock对象可以同时绑定多个Condition对象。在synchronized 中,锁对象的wait()跟它的notify()或者notifyAll()方法配合可以实现一个隐含的条件,如果要和多于一 个的条件关联的时候,就不得不额外添加一个
;而ReentrantLock则无须这样做,多次调用 newCondition()方法即可。