Lock类-ReentrantLock的使用

  在Java多线程中可以使用synchronized隐式锁实现线程之间同步互斥,Java5中提供了Lock类(显示锁)也可以实现线程间的同步,而且在使用上更加方便。本文主要研究 ReentrantLock的使用。

  公平锁与非公平锁:公平锁表示线程获取锁的顺序是按照线程加锁的顺序来分配的,即先来先得的FIFO顺序。而非公平锁就是一种获取锁的抢占机制,是随机获得锁的,和公平锁不一样的就是先来的不一定先得到锁,这个方式可能造成某些线程一直拿不到锁。从这个角度讲,synchronized其实就是一种非公平锁。

  ReentrantLock也是一种可重入锁,类似于synchronized,也就是在拥有锁的情况下可以调用其它需要本锁的方法或者代码块。lock.getHoldCount()可以获得当前线程拥有锁的层数,可以理解为重入了几层。当为0的时候代表当前线程没有占用锁,每重入一次count就加1.

  ReentrantLock具有嗅探锁定、多线路分路通知等功能,而且在使用上比synchronized更加灵活。功能上与synchronized一样实现了线程的互斥性与内存的可见性。

1 ReentrantLock的基本使用方法

  调用其lock()方法会占用锁,调用unlock()会释放锁,但是需要注意必须手动unlock释放锁,否则其他线程会永远阻塞。而且发生异常不会自动释放锁,所以编写程序的时候需要在finally中手动释放锁。

package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * ReentrantLock的基本使用方法
 * @author Administrator
 *
 */
public class Demo1 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo1.class);
    private Lock lock = new ReentrantLock();
    
    public void testMethod(){
        try {
            LOGGER.info("threadName -> {} enter testMethod",Thread.currentThread().getName());
            lock.lock();
            LOGGER.info("threadName -> {} lock",Thread.currentThread().getName());
            Thread.sleep(2*1000);
            LOGGER.info("threadName -> {} unlock",Thread.currentThread().getName());
            lock.unlock();
            LOGGER.info("threadName -> {} exit testMethod",Thread.currentThread().getName());
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
    
    public static void main(String[] args) {
        final Demo1 demo1 = new Demo1();
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo1.testMethod();
            }
        },"threadA").start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo1.testMethod();
            }
        },"threadB").start();
    }
}

结果:(实现了线程之间的互斥同步,threadB释放锁之后threadA才进入Lock,类似于synchronized同步锁的执行效果)

10:10:37 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadB enter testMethod
10:10:37 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadA enter testMethod
10:10:37 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadB lock
10:10:39 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadB unlock
10:10:39 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadB exit testMethod
10:10:39 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadA lock
10:10:41 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadA unlock
10:10:41 [cn.qlq.thread.eleven.Demo1]-[INFO] threadName -> threadA exit testMethod

 

测试异常发生不会释放锁:修改上面占用锁的方法

    public void testMethod(){
        try {
            LOGGER.info("threadName -> {} enter testMethod",Thread.currentThread().getName());
            lock.lock();
            int i =1/0;
            LOGGER.info("threadName -> {} lock",Thread.currentThread().getName());
            Thread.sleep(2*1000);
            LOGGER.info("threadName -> {} unlock",Thread.currentThread().getName());
            lock.unlock();
            LOGGER.info("threadName -> {} exit testMethod",Thread.currentThread().getName());
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

结果:(线程B中执行int i=1/0发生算数异常,但是没有释放锁,所以threadA也一直处于阻塞状态。)

 

正确的用法:finally中释放锁

    public void testMethod(){
        try {
            LOGGER.info("threadName -> {} enter testMethod",Thread.currentThread().getName());
            lock.lock();
            int i =1/0;
            LOGGER.info("threadName -> {} lock",Thread.currentThread().getName());
            Thread.sleep(2*1000);

        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally {
            LOGGER.info("threadName -> {} unlock",Thread.currentThread().getName());
            lock.unlock();
        }
        LOGGER.info("threadName -> {} exit testMethod",Thread.currentThread().getName());
    }

结果: (两个线程都发生算数异常,证明两个线程都可以占用锁,也就是锁被成功的释放)

 

 

2 使用Condition实现等待/通知

   关键字synchronized与wait()/notify()、notifyAll()方法相结合可以实现等待/通知模式,类ReentrantLock也可以实现类似的功能,但需要借助于Condition对象。Condition类是JDK5中出现的类,使用它有更好的灵活性,比如可以实现多路通知功能,也就是在一个Lock对象里面可以创建多个Condition(即对象监视器实例),线程对象可以注册在指定的Condition中,从而可以有选择性地进行线程通知,在调度线程上更加灵活。

  在使用notify()/notifyAll()方法进行通知时,被通知的线程却是由JVM随机选择的。但使用ReentrantLock结合Condition类是可以实现前面介绍过的"选择性通知",这个功能是非常重要的,而且在Condition类中是默认提供的。

  而synchronized就相当于整个Lock对象中只有一个单一的Condition对象,所有的线程都注册在它一个对象的身上。线程开始notifyAll()时,需要通知所有的WATING线程,没有选择权,会出现相当大的效率问题。

例如:一个简单的等待/通知的例子

package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * ReentrantLock結合Condition实现等待/通知
 * 
 * @author Administrator
 *
 */
public class Demo2 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo2.class);
    private Lock lock = new ReentrantLock();
    private Condition condition1 = lock.newCondition();

    public void await() {
        try {
            lock.lock();
            LOGGER.info("threadName -> {} start await", Thread.currentThread().getName());
            condition1.await();
            LOGGER.info("threadName -> {} end await", Thread.currentThread().getName());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            LOGGER.info("threadName -> {} unlock", Thread.currentThread().getName());
            lock.unlock();
        }
        LOGGER.info("threadName -> {} exit await 退出await方法", Thread.currentThread().getName());
    }

    public void signal() {
        try {
            lock.lock();
            LOGGER.info("threadName -> {} start signal", Thread.currentThread().getName());
            condition1.signal();
            LOGGER.info("threadName -> {} end signal", Thread.currentThread().getName());
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            LOGGER.info("threadName -> {} unlock", Thread.currentThread().getName());
            lock.unlock();
        }
        LOGGER.info("exit signal 退出signal方法");
    }

    public static void main(String[] args) {
        final Demo2 demo2 = new Demo2();
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo2.await();
            }
        }, "threadA").start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo2.signal();
            }
        }, "threadB").start();
    }
}

结果:

11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadA start await
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadB start signal
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadB end signal
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadB unlock
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] exit signal 退出signal方法
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadA end await
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadA unlock
11:00:12 [cn.qlq.thread.eleven.Demo2]-[INFO] threadName -> threadA exit await 退出await方法

 

注意:

  condition对象的await()\signal()\signalAll()必须在获得lock.lock()占用锁之后调用,而且最后必须手动释放锁。

  Object的wait()方法相当于Condition的await()方法,会释放锁;

  Object的wait(long)方法相当于Condition类的await(long)方法,可以指定多少秒后自动唤醒转入对象监视器的就绪队列;

  Object类的notify()方法相当于Condition的signal()方法,Object的notifyAll()方法相当于Condition类的signalAll()方法。

 

3 使用多个Condition实现等待/通知部分线程

   使用ReentrantLock创建多个Condition对象之后可以实现唤醒指定的线程,这是控制部分线程行为的方便方式。可以理解为将线程分组,每一组对应一个condition对象。

package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * ReentrantLock結合Condition实现等待/通知,唤醒和等待部分线程
 * 
 * @author Administrator
 *
 */
public class Demo3 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo3.class);
    private Lock lock = new ReentrantLock();
    private Condition conditionA = lock.newCondition();
    private Condition conditionB = lock.newCondition();

    public void awaitA() {
        try {
            lock.lock();
            LOGGER.info("threadName -> {} start await", Thread.currentThread().getName());
            Thread.sleep(1 * 1000);
            conditionA.await();
            LOGGER.info("threadName -> {} end await", Thread.currentThread().getName());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void signalA() {
        try {
            lock.lock();
            LOGGER.info("threadName -> {} start signal", Thread.currentThread().getName());
            Thread.sleep(1 * 1000);
            conditionA.signal();
            LOGGER.info("threadName -> {} end signal", Thread.currentThread().getName());
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void awaitB() {
        try {
            lock.lock();
            LOGGER.info("threadName -> {} start await", Thread.currentThread().getName());
            Thread.sleep(1 * 1000);
            conditionB.await();
            LOGGER.info("threadName -> {} end await", Thread.currentThread().getName());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void signalB() {
        try {
            lock.lock();
            LOGGER.info("threadName -> {} start signal", Thread.currentThread().getName());
            Thread.sleep(1 * 1000);
            conditionB.signal();
            LOGGER.info("threadName -> {} end signal", Thread.currentThread().getName());
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        final Demo3 demo3 = new Demo3();
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo3.awaitA();
            }
        }, "threadA").start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo3.signalA();
            }
        }, "threadA1").start();
        // 访问conditionB
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo3.awaitB();
            }
        }, "threadB").start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo3.signalB();
            }
        }, "threadB1").start();
    }
}

结果: (多个线程还是公用一个锁,但是可以用多个Condition实现阻塞与唤醒部分线程。也就是多个Condition将对象阻塞到多个队列中)

11:18:31 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadA start await
11:18:32 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadA1 start signal
11:18:33 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadA1 end signal
11:18:33 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadB start await
11:18:34 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadB1 start signal
11:18:35 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadB1 end signal
11:18:35 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadA end await
11:18:35 [cn.qlq.thread.eleven.Demo3]-[INFO] threadName -> threadB end await

 

4 公平锁与非公平锁

  公平锁与非公平锁:公平锁表示线程获取锁的顺序是按照线程加锁的顺序来分配的,即先来先得的FIFO顺序。而非公平锁就是一种获取锁的抢占机制,是随机获得锁的,和公平锁不一样的就是先来的不一定先得到锁,这个方式可能造成某些线程一直拿不到锁。从这个角度讲,synchronized其实就是一种非公平锁。

  ReentrantLock类有一个单一参数的构造方法,接受boolean类型的数据,传入true表示创建的是公平锁,传入false创建的是非公平锁(不带参数的默认创建非公平锁)

    public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

 

(1)公平锁的测试:

package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 公平锁与非公平锁
 * 
 * @author Administrator
 *
 */
public class Demo5 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo5.class);

    private Lock lock = new ReentrantLock(true);

    public void testMethod() {
        try {
            lock.lock();
            System.out.println("★ThreadName" + Thread.currentThread().getName() + "获得锁");
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        final Demo5 demo5 = new Demo5();
        Runnable runnable = new Runnable() {
            public void run() {
                System.out.println("☆线程" + Thread.currentThread().getName() + "运行了");
                demo5.testMethod();
            }
        };
        Thread[] threads = new Thread[5];
        for (int i = 0; i < 5; i++)
            threads[i] = new Thread(runnable);
        for (int i = 0; i < 5; i++)
            threads[i].start();

    }
}

结果: (先运行的先获得锁---只能说是基本上是FIFO,也并不是绝对的)

☆线程Thread-0运行了
☆线程Thread-4运行了
☆线程Thread-3运行了
☆线程Thread-2运行了
☆线程Thread-1运行了
★ThreadNameThread-0获得锁
★ThreadNameThread-4获得锁
★ThreadNameThread-3获得锁
★ThreadNameThread-2获得锁
★ThreadNameThread-1获得锁

 

(2)非公平锁的测试:

package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 公平锁与非公平锁
 * 
 * @author Administrator
 *
 */
public class Demo5 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo5.class);

    private Lock lock = new ReentrantLock(false);

    public void testMethod() {
        try {
            lock.lock();
            System.out.println("★ThreadName" + Thread.currentThread().getName() + "获得锁");
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        final Demo5 demo5 = new Demo5();
        Runnable runnable = new Runnable() {
            public void run() {
                System.out.println("☆线程" + Thread.currentThread().getName() + "运行了");
                demo5.testMethod();
            }
        };
        Thread[] threads = new Thread[5];
        for (int i = 0; i < 5; i++)
            threads[i] = new Thread(runnable);
        for (int i = 0; i < 5; i++)
            threads[i].start();

    }
}

结果: (不一定先运行的先获得锁)

☆线程Thread-1运行了
☆线程Thread-2运行了
☆线程Thread-3运行了
☆线程Thread-0运行了
☆线程Thread-4运行了
★ThreadNameThread-2获得锁
★ThreadNameThread-3获得锁
★ThreadNameThread-0获得锁
★ThreadNameThread-4获得锁
★ThreadNameThread-1获得锁

 

5  使用condition实现线程按顺序执行

   使用condition实现线程按顺序执行(比如创建10个线程,每个线程打印自己的名字,按照1-10打印)

package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 使用condition实现线程按顺序执行(比如创建10个线程,每个线程打印自己的名字,按照1-10打印)
 * 
 * @author Administrator
 *
 */
public class Demo14 {
    private ReentrantLock lock = new ReentrantLock();
    private Condition newCondition = lock.newCondition();
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo14.class);

    private volatile int currentNum = 1;// 标记当前线程执行到第几个线程

    public void printName() {
        try {
            lock.lock();
            while (!String.valueOf(currentNum).equals(Thread.currentThread().getName())) {
                newCondition.await();
            }
            LOGGER.info("threadName - > {} ", Thread.currentThread().getName());
            newCondition.signalAll();
            currentNum++;
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        final Demo14 demo8 = new Demo14();
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                demo8.printName();
            }
        };

        Thread[] threads = new Thread[10];
        for (int i = 0; i < 10; i++) {
            threads[i] = new Thread(runnable, (i + 1) + "");
        }
        for (int i = 0; i < 10; i++) {
            threads[i].start();
        }

    }
}

结果:

 

6 其他方法研究

1. getHoldCount()、getQueueLength()方法、getWaitQueueLength(condition)方法

  • getHoldCount()  返回当前线程保持此锁定的个数,也就是调用lock方法的此时,可以理解为重入锁的次数
  • getQueueLength()方法  返回正等待此获取此锁定的线程的估计数,比如有5个线程,1个线程首先执行await(),那么在调用getQueueLength()方法后返回值是4,说明有4个线程等待lock的释放。(可以理解为等待锁的线程数)
package cn.qlq.thread.eleven;

import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 其他方法研究 getQueueLength--返回正等待此获取此锁定的线程的估计数
 * 
 * @author Administrator
 *
 */
public class Demo6 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo6.class);

    private ReentrantLock lock = new ReentrantLock(true);

    public void testMethod() {
        try {
            lock.lock();
            LOGGER.debug("testMethod lock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(),
                    lock.getQueueLength());
            // 调用testMethod2(),模拟锁重入
            testMethod2();
        } finally {
            lock.unlock();
            LOGGER.debug("testMethod unlock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(),
                    lock.getQueueLength());
        }
    }

    public void testMethod2() {
        try {
            lock.lock();
            LOGGER.debug("testMethod2 lock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(),
                    lock.getQueueLength());
        } finally {
            lock.unlock();
            LOGGER.debug("testMethod2 unlock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(),
                    lock.getQueueLength());
        }
    }

    public void testMethod3() {
        try {
            lock.lock();
            LOGGER.debug("testMethod3 lock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(),
                    lock.getQueueLength());
        } finally {
            lock.unlock();
            LOGGER.debug("testMethod3 unlock,getHoldCount()->{},getQueueLength->{}", lock.getHoldCount(),
                    lock.getQueueLength());
        }
    }

    public static void main(String[] args) throws InterruptedException {
        final Demo6 demo6 = new Demo6();
        new Thread(new Runnable() {
            public void run() {
                demo6.testMethod();
            }
        }, "thread--t1").start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                demo6.testMethod3();
            }
        }, "thread--t2").start();
    }
}

结果:

15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod lock,getHoldCount()->1,getQueueLength->1
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod2 lock,getHoldCount()->2,getQueueLength->1
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod2 unlock,getHoldCount()->1,getQueueLength->1
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod unlock,getHoldCount()->0,getQueueLength->1
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod3 lock,getHoldCount()->1,getQueueLength->0
15:22:47 [cn.qlq.thread.eleven.Demo6]-[DEBUG] testMethod3 unlock,getHoldCount()->0,getQueueLength->0

 

  • getWaitQueueLength(condition)方法返回此Condition对象阻塞队列的数量

package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 
 * @author Administrator
 *
 */
public class Demo7 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo7.class);
    private ReentrantLock lock = new ReentrantLock();
    private Condition conditionA = lock.newCondition();

    public void awaitA() {
        try {
            lock.lock();
            Thread.sleep(1 * 1000);
            LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(),
                    lock.getWaitQueueLength(conditionA));
            conditionA.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void signalA() {
        try {
            lock.lock();
            Thread.sleep(1 * 1000);
            LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(),
                    lock.getWaitQueueLength(conditionA));
            conditionA.signal();
            LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(),
                    lock.getWaitQueueLength(conditionA));
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        final Demo7 demo7 = new Demo7();
        Runnable await = new Runnable() {
            public void run() {
                demo7.awaitA();
            }
        };
        new Thread(await, "threadA1").start();
        new Thread(await, "threadA2").start();
        new Thread(await, "threadA3").start();

        // 访问signal
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo7.signalA();
            }
        }, "threadS1").start();
    }
}

结果:

15:40:27 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA2,getWaitQueueLength(conditionA)->0
15:40:28 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA3,getWaitQueueLength(conditionA)->1
15:40:29 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA1,getWaitQueueLength(conditionA)->2
15:40:30 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadS1,getWaitQueueLength(conditionA)->3
15:40:30 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadS1,getWaitQueueLength(conditionA)->2

 

修改上面signalA的方法唤醒所有:

    public void signalA() {
        try {
            lock.lock();
            Thread.sleep(1 * 1000);
            LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(),
                    lock.getWaitQueueLength(conditionA));
            conditionA.signalAll();
            LOGGER.info("threadName -> {},getWaitQueueLength(conditionA)->{} ", Thread.currentThread().getName(),
                    lock.getWaitQueueLength(conditionA));
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

结果:

15:41:58 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA1,getWaitQueueLength(conditionA)->0
15:41:59 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA2,getWaitQueueLength(conditionA)->1
15:42:00 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadA3,getWaitQueueLength(conditionA)->2
15:42:01 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadS1,getWaitQueueLength(conditionA)->3
15:42:01 [cn.qlq.thread.eleven.Demo7]-[INFO] threadName -> threadS1,getWaitQueueLength(conditionA)->0

 

2.hasQueuedThreads()、 hasQueuedThread(thread)、lock.hasWaiters(conditionA)方法

  • hasQueuedThreads()  方法返回此锁是否有线程在等待获取此锁
  • hasQueuedThread(thread)  查询指定的线程是否正在等待获取此锁
  • lock.hasWaiters(condition)  此方法必须在获取到lock(lock.lock())之后调用,查询指定的condition是否有等待的对象
package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 
 * @author Administrator
 *
 */
public class Demo8 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo8.class);
    private ReentrantLock lock = new ReentrantLock();
    private Condition conditionA = lock.newCondition();

    public void awaitA() {
        try {
            lock.lock();
            Thread.sleep(1 * 1000);
            conditionA.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void signalA() {
        try {
            lock.lock();
            Thread.sleep(1 * 1000);
            conditionA.signal();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        final Demo8 demo8 = new Demo8();
        Runnable await = new Runnable() {
            public void run() {
                demo8.awaitA();
            }
        };
        new Thread(await, "threadA2").start();
        new Thread(await, "threadA3").start();
        Thread thread = new Thread(await, "threadA1");
        thread.start();

        // 访问signal
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo8.signalA();
            }
        }, "threadS1").start();

        // 返回thread是否在等待获取此锁
        System.out.println(demo8.getLock().hasQueuedThread(thread));
        // 获取是否有等待线程
        System.out.println(demo8.getLock().hasQueuedThreads());
    }

    public ReentrantLock getLock() {
        return lock;
    }

    public void setLock(ReentrantLock lock) {
        this.lock = lock;
    }
}

结果:

false
true

 

package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 
 * @author Administrator
 *
 */
public class Demo9 {
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo9.class);
    private ReentrantLock lock = new ReentrantLock();
    private Condition conditionA = lock.newCondition();

    public void awaitA() {
        try {
            lock.lock();
            Thread.sleep(1 * 1000);
            conditionA.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void signalA() {
        try {
            lock.lock();
            Thread.sleep(1 * 1000);
            System.out.println(lock.hasWaiters(conditionA));
            conditionA.signalAll();
            System.out.println(lock.hasWaiters(conditionA));
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        final Demo9 demo8 = new Demo9();
        Runnable await = new Runnable() {
            public void run() {
                demo8.awaitA();
            }
        };
        Thread thread = new Thread(await, "threadA1");
        thread.start();
        new Thread(await, "threadA2").start();
        new Thread(await, "threadA3").start();

        // 访问signal
        new Thread(new Runnable() {
            @Override
            public void run() {
                demo8.signalA();
            }
        }, "threadS1").start();
    }
}

结果:

true
false

 

3.   isFair(),isLocked(),isHeldByCurrentThread()方法

  •   isFair()  判断一个锁是否是公平锁
  •   isLocked()  判断一个锁是否已经锁住,也就是判断是否被任意线程锁定
  •   isHeldByCurrentThread()  判断当前线程是否拥有指定的锁
package cn.qlq.thread.eleven;

import java.util.concurrent.locks.ReentrantLock;

/**
 * 
 * @author Administrator
 *
 */
public class Demo10 {
    private ReentrantLock lock = new ReentrantLock();

    public void awaitA() {
        lock.lock();
        System.out.println("isFair -> " + lock.isFair());
        System.out.println("isLocked -> " + lock.isLocked());
        System.out.println("isHeldByCurrentThread -> " + lock.isHeldByCurrentThread());
        lock.unlock();
    }

    public ReentrantLock getLock() {
        return lock;
    }

    public void setLock(ReentrantLock lock) {
        this.lock = lock;
    }

    public static void main(String[] args) {
        final Demo10 demo8 = new Demo10();
        demo8.awaitA();
    }
}

结果:

isFair -> false
isLocked -> true
isHeldByCurrentThread -> true

 

4. lockInterruptibly()、tryLock()、tryLock(long, TimeUnit)---轮询锁与定时锁

  • lockInterruptibly()方法如果在获取锁的情况下如果收到中断信号会进入中断异常
package cn.qlq.thread.eleven;

import java.util.concurrent.locks.ReentrantLock;

/**
 * 
 * @author Administrator
 *
 */
public class Demo11 {
    private ReentrantLock lock = new ReentrantLock();

    public void awaitA() {
        try {
            lock.lockInterruptibly();
            System.out.println("isFair -> " + lock.isFair());
            System.out.println("isLocked -> " + lock.isLocked());
            System.out.println("isHeldByCurrentThread -> " + lock.isHeldByCurrentThread());
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) {
        final Demo11 demo8 = new Demo11();
        Thread thread = new Thread(new Runnable() {
            @Override
            public void run() {
                demo8.awaitA();
            }
        });
        thread.start();
        // 发出中断信号
        thread.interrupt();
    }
}

结果:

java.lang.InterruptedException
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1219)
at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:340)
at cn.qlq.thread.eleven.Demo11.awaitA(Demo11.java:15)
at cn.qlq.thread.eleven.Demo11$1.run(Demo11.java:31)
at java.lang.Thread.run(Thread.java:745)
Exception in thread "Thread-0" java.lang.IllegalMonitorStateException
at java.util.concurrent.locks.ReentrantLock$Sync.tryRelease(ReentrantLock.java:155)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.release(AbstractQueuedSynchronizer.java:1260)
at java.util.concurrent.locks.ReentrantLock.unlock(ReentrantLock.java:460)
at cn.qlq.thread.eleven.Demo11.awaitA(Demo11.java:22)
at cn.qlq.thread.eleven.Demo11$1.run(Demo11.java:31)
at java.lang.Thread.run(Thread.java:745)

 

如果不发出中断信号:

    public static void main(String[] args) {
        final Demo11 demo8 = new Demo11();
        Thread thread = new Thread(new Runnable() {
            @Override
            public void run() {
                demo8.awaitA();
            }
        });
        thread.start();
    }

结果:

isFair -> false
isLocked -> true
isHeldByCurrentThread -> true

 

  • tryLock可以获取有个仅仅没有被其他线程占用的锁,返回一个boolean类型的值代表是否获取锁成功
package cn.qlq.thread.eleven;

import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 
 * @author Administrator
 *
 */
public class Demo11 {
    private ReentrantLock lock = new ReentrantLock();
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo11.class);

    public void awaitA() {
        if (lock.tryLock()) {
            LOGGER.info("threadName -> {} , isFair -> " + lock.isFair(), Thread.currentThread().getName());
            LOGGER.info("threadName -> {} ,isLocked -> " + lock.isLocked(), Thread.currentThread().getName());
            LOGGER.info("threadName -> {} ,isHeldByCurrentThread -> " + lock.isHeldByCurrentThread(),
                    Thread.currentThread().getName());
            lock.unlock();
        } else {
            LOGGER.info("threadName -> {} 没有获得锁 ", Thread.currentThread().getName());
        }
    }

    public static void main(String[] args) {
        final Demo11 demo8 = new Demo11();
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                demo8.awaitA();
            }
        };
        Thread thread = new Thread(runnable, "thread");
        Thread thread2 = new Thread(runnable, "thread2");
        thread.start();
        thread2.start();
    }
}

结果:

16:53:03 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread 没有获得锁
16:53:03 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 , isFair -> false
16:53:03 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 ,isLocked -> true
16:53:03 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 ,isHeldByCurrentThread -> true

 

  • lock.tryLock(long, TimeUnit.MILLISECONDS) 如果锁定在给定等待时间内没有被另一个线程保持,且当前线程未被中断,则获取该锁定
package cn.qlq.thread.eleven;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 
 * @author Administrator
 *
 */
public class Demo11 {
    private ReentrantLock lock = new ReentrantLock();
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo11.class);

    public void awaitA() {
        try {
            if (lock.tryLock(2000, TimeUnit.MILLISECONDS)) {
                LOGGER.info("threadName -> {} , isFair -> " + lock.isFair(), Thread.currentThread().getName());
                LOGGER.info("threadName -> {} ,isLocked -> " + lock.isLocked(), Thread.currentThread().getName());
                LOGGER.info("threadName -> {} ,isHeldByCurrentThread -> " + lock.isHeldByCurrentThread(),
                        Thread.currentThread().getName());
                // 释放锁
                lock.unlock();
            } else {
                LOGGER.info("threadName -> {} 没有获得锁 ", Thread.currentThread().getName());
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    public static void main(String[] args) {
        final Demo11 demo8 = new Demo11();
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                demo8.awaitA();
            }
        };
        Thread thread = new Thread(runnable, "thread");
        Thread thread2 = new Thread(runnable, "thread2");
        thread.start();
        thread2.start();
    }
}

结果:

16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 , isFair -> false
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 ,isLocked -> true
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread2 ,isHeldByCurrentThread -> true
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread , isFair -> false
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread ,isLocked -> true
16:56:14 [cn.qlq.thread.eleven.Demo11]-[INFO] threadName -> thread ,isHeldByCurrentThread -> true

 

5. Condition.awaitUninterruptibly()、Condition.awaitUntil(date)方法

  • Condition.awaitUninterruptibly()是在await的过程中如果线程收到中断信号不会抛出异常(可中断的锁获取)
package cn.qlq.thread.eleven;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 
 * @author Administrator
 *
 */
public class Demo12 {
    private ReentrantLock lock = new ReentrantLock();
    private Condition newCondition = lock.newCondition();
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo12.class);

    public void awaitA() {
        LOGGER.info("threadName -> {} 进入方法,等待锁 ", Thread.currentThread().getName());
        try {
            lock.lock();
            LOGGER.info("threadName -> {} begain await ", Thread.currentThread().getName());
            newCondition.awaitUninterruptibly();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        final Demo12 demo8 = new Demo12();
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                demo8.awaitA();
            }
        };
        Thread thread = new Thread(runnable, "thread");

        Thread.sleep(1 * 1000);
        thread.interrupt();

    }
}

 

结果:

如果修改为await之后再次中断:

    public void awaitA() {
        LOGGER.info("threadName -> {} 进入方法,等待锁 ", Thread.currentThread().getName());
        try {
            lock.lock();
            LOGGER.info("threadName -> {} begain await ", Thread.currentThread().getName());
            newCondition.await();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

结果:

 

 

  •  Condition.awaitUntil(date)是停止到指定时间如果没有被唤醒自动唤醒
package cn.qlq.thread.eleven;

import java.util.Date;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 
 * @author Administrator
 *
 */
public class Demo13 {
    private ReentrantLock lock = new ReentrantLock();
    private Condition newCondition = lock.newCondition();
    private static final Logger LOGGER = LoggerFactory.getLogger(Demo13.class);

    public void awaitA() {
        LOGGER.info("threadName -> {} 进入方法,等待锁 ", Thread.currentThread().getName());
        try {
            lock.lock();
            LOGGER.info("threadName -> {} begain await ", Thread.currentThread().getName());
            Date deadline = new Date();
            deadline.setSeconds(deadline.getSeconds() + 3);
            newCondition.awaitUntil(deadline);
            LOGGER.info("threadName -> {} end await ", Thread.currentThread().getName());
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        final Demo13 demo8 = new Demo13();
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                demo8.awaitA();
            }
        };
        Thread thread = new Thread(runnable, "thread");
        thread.start();
    }
}

结果: (3秒钟后自己唤醒,这个方法是停止到某一时间点)

17:16:18 [cn.qlq.thread.eleven.Demo13]-[INFO] threadName -> thread 进入方法,等待锁
17:16:18 [cn.qlq.thread.eleven.Demo13]-[INFO] threadName -> thread begain await
17:16:21 [cn.qlq.thread.eleven.Demo13]-[INFO] threadName -> thread end await

 

总结: 关于Lock和Synchronized两种同步方式的比较:

1.性能方面,两者实际是差不多的,JVM不断的对synchronized进行优化,所以性能基本没多大差别
2.synchronized是关键字,就和if...else...一样,是语法层面的实现,因此synchronized获取锁以及释放锁都是Java虚拟机帮助用户完成的;ReentrantLock是类层面的实现,因此锁的获取以及锁的释放都需要用户自己去操作。而且synchronized遇到错误会释放锁,而ReentrantLock不会自动释放。类和关键字最大的区别就是类使用更加灵活。

3.synchronized是不公平锁,而ReentrantLock可以指定锁是公平的还是非公平的。公平和非公平体现的就是获取锁的顺序是否是FIFO的顺序获取。

4.synchronized实现等待/通知机制通知的线程是随机的,ReentrantLock结合Condition可以实现等待/通知机制可以有选择性地通知,这点有时候便于理解。

5.和synchronized相比,ReentrantLock提供给用户多种方法用于锁信息的获取,比如可以获取是否有线程在等待锁、锁重入的层数等信息;而且显示锁增加了可中断的锁获取方式,以及tryLock轮询锁或者定时锁等方法

 

 

  学习完ReentrantLock+Condition的使用之后可以完成一个简单的生产者消费者的例子,参考我的另一篇:https://www.cnblogs.com/qlqwjy/p/10115756.html

 

补充:重入锁也可能造成死锁:

package Thread;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

/**
 * 测试死锁 思路:两个线程,每个线程占有不同的资源,等待其他资源
 * 
 * @author: qlq
 * @date : 2018年6月14日上午10:37:24
 */
public class DeadLockTest1 {

    public static void main(String[] args) {
        Lock lock1 = new ReentrantLock();
        Lock lock2 = new ReentrantLock();
        MyThread1 t1 = new MyThread1(true,lock1,lock2);
        MyThread1 t2 = new MyThread1(false,lock1,lock2);
        t1.start();
        t2.start();
    }

}

class MyThread1 extends Thread {
    private boolean flag;// 标记走哪个线路
    private Lock lock1;//第一把锁
    private Lock lock2;//第二把锁

    public boolean isFlag() {
        return flag;
    }

    public void setFlag(boolean flag) {
        this.flag = flag;
    }

    protected MyThread1(boolean flag, Lock lock1, Lock lock2) {
        super();
        this.flag = flag;
        this.lock1 = lock1;
        this.lock2 = lock2;
    }

    @Override
    public void run() {
        if (flag) {// 占有资源A,等待资源B
            if(lock1.tryLock()){
                try {
                    Thread.sleep(2*1000);
                } catch (InterruptedException e1) {
                    // TODO Auto-generated catch block
                    e1.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName()+"占有第一把锁,等待第二把锁");
                try {
                    if(lock2.tryLock(50*1000,TimeUnit.SECONDS)){
                        try {
                            Thread.sleep(2*1000);
                            System.out.println(Thread.currentThread().getName()+"占有第二把锁");
                        } catch (InterruptedException e) {
                            // TODO Auto-generated catch block
                            e.printStackTrace();
                        }
                        System.out.println(Thread.currentThread().getName()+"释放第二把锁");
                        lock2.unlock();
                        System.out.println(Thread.currentThread().getName()+"释放第一把锁");
                        lock1.unlock();
                    }
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }

            }
        } else {// 占有第二把锁,等待第一把锁
            if(lock2.tryLock()){
                try {
                    Thread.sleep(2*1000);
                } catch (InterruptedException e1) {
                    // TODO Auto-generated catch block
                    e1.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName()+"占有第二把锁,等待第一把锁");
                try {
                    if(lock1.tryLock(50*1000,TimeUnit.SECONDS)){
                        try {
                            Thread.sleep(2*1000);
                            System.out.println(Thread.currentThread().getName()+"占有第一把锁");
                        } catch (InterruptedException e) {
                            // TODO Auto-generated catch block
                            e.printStackTrace();
                        }
                        System.out.println(Thread.currentThread().getName()+"释放第一把锁");
                        lock1.unlock();
                        System.out.println(Thread.currentThread().getName()+"释放第二把锁");
                        lock2.unlock();
                    }
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }

            }
        }
    }
}

 结果:

Thread-0占有第一把锁,等待第二把锁
Thread-1占有第二把锁,等待第一把锁

 

解决办法:在正确的地方释放锁。。。。

 

注意:锁必须是同一把锁才会生效,如果锁作为局部变量是不会生效的,局部变量是每个线程一把锁。。。。。

 

补充: ReentrantLock 与 Synchronized 的区别 

重入锁(ReentrantLock)是Lock接口最常见的一种实现,顾名思义,它与synchronized一样是可重入的。在基本用法上,ReentrantLock也与synchronized很相似,只是代码写法上稍有区别而已。不 过,ReentrantLock与synchronized相比增加了一些高级功能,主要有以下三项:等待可中断、可实现公平锁及锁可以绑定多个条件。

·等待可中断:是指当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改 为处理其他事情。可中断特性对处理执行时间非常长的同步块很有帮助。

·公平锁:是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁;而非公平锁则不保证这一点,在锁被释放时,任何一个等待锁的线程都有机会获得锁。synchronized中的锁是非 公平的,ReentrantLock在默认情况下也是非

平的,但可以通过带布尔值的构造函数要求使用公平 锁。不过一旦使用了公平锁,将会导致ReentrantLock的性能急剧下降,会明显影响吞吐量。

·锁绑定多个条件:是指一个ReentrantLock对象可以同时绑定多个Condition对象。在synchronized 中,锁对象的wait()跟它的notify()或者notifyAll()方法配合可以实现一个隐含的条件,如果要和多于一 个的条件关联的时候,就不得不额外添加一个

;而ReentrantLock则无须这样做,多次调用 newCondition()方法即可。

 

posted @ 2018-12-17 11:24  QiaoZhi  阅读(3996)  评论(0编辑  收藏  举报