啥都不会啊!怎么办啊!

Fitz

慢慢来生活总会好起来的!!!

Problem B. Harvest of Apples 莫队求组合数前缀和

Problem Description
There are n apples on a tree, numbered from 1 to n.
Count the number of ways to pick at most m apples.
 

 

Input
The first line of the input contains an integer T (1T105) denoting the number of test cases.
Each test case consists of one line with two integers n,m (1mn105).
 

 

Output
For each test case, print an integer representing the number of ways modulo 109+7.
 

 

Sample Input
2 5 2 1000 500
 

 

Sample Output
16 924129523
 

 

Source
 

 

Recommend
 
 
这题刚写的时候 公式及其的容易推 C(n,0)+C(n,1)+C(n,2)+。。。+C(n,m)
然后一直在想能不能化简这一项一项的求 复杂度会爆炸的
 
最后的题解是莫队
C(n,m)=C(n-1,m-1)+C(n-1,m)   
设 S(n,m)=C(n,0)+C(n,1)+C(n,2)+。。。+C(n,m)
然后将S(n,m) 通过 第一个公式 拆项
最后化简 变为 S(n,m)=2*S(n-1,m)-C(n-1,m);
 
预处理阶乘逆元  然后就 OK了 
莫队大法好
 
 
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <queue>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <set>
 7 #include <iostream>
 8 #include <map>
 9 #include <stack>
10 #include <string>
11 #include <vector>
12 #define  pi acos(-1.0)
13 #define  eps 1e-6
14 #define  fi first
15 #define  se second
16 #define  lson l,m,rt<<1
17 #define  rson m+1,r,rt<<1|1
18 #define  bug         printf("******\n")
19 #define  mem(a,b)    memset(a,b,sizeof(a))
20 #define  fuck(x)     cout<<"["<<x<<"]"<<endl
21 #define  f(a)        a*a
22 #define  sf(n)       scanf("%d", &n)
23 #define  sff(a,b)    scanf("%d %d", &a, &b)
24 #define  sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
25 #define  sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
26 #define  pf          printf
27 #define  FRE(i,a,b)  for(i = a; i <= b; i++)
28 #define  FREE(i,a,b) for(i = a; i >= b; i--)
29 #define  FRL(i,a,b)  for(i = a; i < b; i++)
30 #define  FRLL(i,a,b) for(i = a; i > b; i--)
31 #define  FIN         freopen("DATA.txt","r",stdin)
32 #define  gcd(a,b)    __gcd(a,b)
33 #define  lowbit(x)   x&-x
34 #pragma  comment (linker,"/STACK:102400000,102400000")
35 using namespace std;
36 typedef long long  LL;
37 typedef unsigned long long ULL;
38 const int INF = 0x7fffffff;
39 const int mod = 1e9 + 7;
40 const int maxn = 1e5 + 10;
41 int t, sz;
42 LL inv[maxn], a[maxn], b[maxn];
43 struct node {
44     int l, r, id;
45     LL ans = 0;
46 } qu[maxn];
47 int cmp(node a, node b) {
48     return a.l / sz == b.l / sz ? a.r < b.r : a.l < b.l;
49 }
50 LL expmod(LL a, LL b) {
51     LL ans = 1;
52     while(b) {
53         if (b & 1) ans = ans * a % mod;
54         a = a * a % mod;
55         b = b >> 1;
56     }
57     return ans;
58 }
59 void init() {
60     a[1] = 1;
61     for (int i = 2 ; i < maxn ; i++) a[i] = a[i - 1] * i % mod;
62     for (int i = 1 ; i < maxn ; i++) b[i] = expmod(a[i], mod - 2);
63 }
64 LL C(int n, int m) {
65     if (m > n || n < 0 || m < 0 ) return 0;
66     if (m == n || m == 0) return 1;
67     return a[n] * b[m] % mod * b[n - m] % mod;
68 }
69 
70 int main() {
71     init();
72     sf(t);
73     for (int i = 1 ; i <= t ; i++) {
74         sff(qu[i].l, qu[i].r);
75         qu[i].id = i, qu[i].ans = 0;
76     }
77     sz = sqrt(maxn);
78     sort(qu + 1, qu + 1 + t, cmp);
79     LL sum = 1;
80     for (int i = 1, L = 1, R = 0 ; i <= t ; i++) {
81         while(L < qu[i].l) sum = (2 * sum - C(L++, R) + mod) % mod;
82         while(L > qu[i].l) sum = ((sum + C(--L, R)) * b[2]) % mod;
83         while(R < qu[i].r) sum = (sum + C(L, ++R)) % mod;
84         while(R > qu[i].r) sum = (sum - C(L, R--) + mod) % mod;
85         qu[qu[i].id].ans = sum;
86     }
87     for (int i = 1 ; i <= t ; i++) printf("%lld\n", qu[i].ans);
88     return 0;
89 }

 

 
posted @ 2018-08-28 16:41  Fitz~  阅读(623)  评论(0编辑  收藏  举报