Python heapq模块
这个模块(build-in)实现了一个堆的数据结构,完美的解决了Top-K问题,以后解决Top-K问题的时候,直接把这个模块拿来用就可以了
注意,默认的heap是一个小顶堆!
heapq模块提供了如下几个函数:
heapq.heappush(heap, item) 把item添加到heap中(heap是一个列表)
heapq.heappop(heap) 把堆顶元素弹出,返回的就是堆顶
heapq.heappushpop(heap, item) 先把item加入到堆中,然后再pop,比heappush()再heappop()要快得多
heapq.heapreplace(heap, item) 先pop,然后再把item加入到堆中,比heappop()再heappush()要快得多
heapq.heapify(x) 将列表x进行堆调整,默认的是小顶堆
heapq.merge(*iterables) 将多个列表合并,并进行堆调整,返回的是合并后的列表的迭代器
heapq.nlargest(n, iterable, key=None) 返回最大的n个元素(Top-K问题)
heapq.nsmallest(n, iterable, key=None) 返回最小的n个元素(Top-K问题)
import heapq import random # Top-K mylist = list(random.sample(range(100), 10)) k = 3 largest = heapq.nlargest(k, mylist) smallest = heapq.nsmallest(k, mylist) print('original list is', mylist) print('largest-'+str(k), ' is ', largest) print('smallest-'+str(k), ' is ', smallest) # heapify print('original list is', mylist) heapq.heapify(mylist) print('heapify list is', mylist) # heappush & heappop heapq.heappush(mylist, 105) print('pushed heap is', mylist) heapq.heappop(mylist) print('popped heap is', mylist) # heappushpop & heapreplace heapq.heappushpop(mylist, 130) # heappush -> heappop print('heappushpop', mylist) heapq.heapreplace(mylist, 2) # heappop -> heappush print('heapreplace', mylist)
输出结果
original list is [18, 6, 10, 24, 48, 2, 9, 25, 16, 89] largest-3 is [89, 48, 25] smallest-3 is [2, 6, 9] original list is [18, 6, 10, 24, 48, 2, 9, 25, 16, 89] heapify list is [2, 6, 9, 16, 48, 10, 18, 25, 24, 89] pushed heap is [2, 6, 9, 16, 48, 10, 18, 25, 24, 89, 105] popped heap is [6, 16, 9, 24, 48, 10, 18, 25, 105, 89] heappushpop [9, 16, 10, 24, 48, 130, 18, 25, 105, 89] heapreplace [2, 16, 10, 24, 48, 130, 18, 25, 105, 89]
leetcode 703 python
设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。
你的 KthLargest
类需要一个同时接收整数 k
和整数数组nums
的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add
,返回当前数据流中第K大的元素。
示例:
int k = 3; int[] arr = [4,5,8,2]; KthLargest kthLargest = new KthLargest(3, arr); kthLargest.add(3); // returns 4 kthLargest.add(5); // returns 5 kthLargest.add(10); // returns 5 kthLargest.add(9); // returns 8 kthLargest.add(4); // returns 8
说明:
你可以假设 nums
的长度≥ k-1
且k
≥ 1。
class KthLargest(object): def __init__(self, k, nums): """ :type k: int :type nums: List[int] """ self.pool = nums self.size = len(self.pool) self.k = k heapq.heapify(self.pool) while self.size > k: heapq.heappop(self.pool) self.size -= 1 def add(self, val): """ :type val: int :rtype: int """ if self.size < self.k: heapq.heappush(self.pool, val) self.size += 1 elif val > self.pool[0]: heapq.heapreplace(self.pool, val) return self.pool[0]