推荐系统

推荐系统——电影评分

例子:预测电影评分

有如下信息

Movie Alice (1) Bob (2) Carol (3) Dave (4)
Love at last 5 5 0 0
Romance forever 5 ? ? 0
Cute puppies of love ? 4 0 ?
Nonstop car chases 0 0 5 4
Swords vs. karate 0 0 5 ?

 

定义

nu = 用户的数量

nm = 电影的数量

r(i, j) = 1 如果用户 j 给电影 i 打分

y(i, j) = 当 r(i, j) = 1 的情况下,用户 j 给电影 i 打的分数(0-5)

目标:预测 ?的值(未评分用户对电影的评分)

现假设每个电影有两个特征

Movie Alice (1) Bob (2) Carol (3) Dave (4)

x1

(remoance)

x2

(action)

Love at last 5 5 0 0 0.9 0
Romance forever 5 ? ? 0 1.0 0.01
Cute puppies of love ? 4 0 ? 0.99 0
Nonstop car chases 0 0 5 4 0.1 1.0
Swords vs. karate 0 0 5 ? 0 0.9

这样就有了电影特征的训练集,比如对于电影 Love at least 的特征向量为

\[{x^{\left( 1 \right)}} = \left[ {\begin{array}{*{20}{c}}
{{x_0}}\\
{{x_1}}\\
{{x_2}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1\\
{0.9}\\
0
\end{array}} \right]\]

对于每个用户 j ,学习其对应的单数 θ(j) ∈ R3,然后用 (θ(1))Tx(i) 预测用户 j 对于电影 i 的评分。

用 m(j) = 代表用户 j 评分的电影的数量,则定义学习目标

\[\underbrace {\min }_{{\theta ^{\left( j \right)}}}\frac{1}{{2{m^{\left( j \right)}}}}\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \frac{\lambda }{{2{m^{\left( j \right)}}}}\sum\limits_{k = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} \]

在推荐系统中会将 m(j) 去掉,因为他是常数且不会影响计算得到的 θ(j)

\[\underbrace {\min }_{{\theta ^{\left( j \right)}}}\frac{1}{2}\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \frac{\lambda }{2}\sum\limits_{k = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} \]

定义所有用户的学习目标

\[\underbrace {\min }_{{\theta ^{\left( 1 \right)}},...,{\theta ^{\left( {{n_u}} \right)}}}\frac{1}{2}\sum\limits_{j = 1}^{{n_u}} {\left[ {\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \lambda \sum\limits_{k = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} } \right]} \]

 然后运用梯度下降算法得到最优的 θ

\[\begin{array}{l}
\theta _k^{\left( j \right)}: = \theta _k^{\left( j \right)} - \alpha \sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)x_k^{\left( i \right)}} ---for-k=0\\
\theta _k^{\left( j \right)}: = \theta _k^{\left( j \right)} - \alpha \left( {\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)x_k^{\left( i \right)} + + \lambda \theta _k^{\left( j \right)}} } \right)---for-k≠0
\end{array}\]


推荐系统——系统过滤

对于数据

Movie Alice (1) Bob (2) Carol (3) Dave (4)

x1

(remoance)

x2

(action)

Love at last 5 5 0 0 0.9 0
Romance forever 5 ? ? 0 1.0 0.01
Cute puppies of love ? 4 0 ? 0.99 0
Nonstop car chases 0 0 5 4 0.1 1.0
Swords vs. karate 0 0 5 ? 0 0.9

 一般情况下其实很难知道一个点有有“多么‘浪漫’”(比如 浪漫概率为 0.9)或者“多么‘动作’”,因此数据应该是如下形态

Movie Alice (1) Bob (2) Carol (3) Dave (4)

x1

(remoance)

x2

(remoance)

Love at last 5 5 0 0 ? ?
Romance forever 5 ? ? 0 ? ?
Cute puppies of love ? 4 0 ? ? ?
Nonstop car chases 0 0 5 4 ? ?
Swords vs. karate 0 0 5 ? ? ?

但是,我们可以调查用户有多么喜欢“浪漫”电影,多么喜欢“动作”电影。因此,我们可以得到如下数据

\[{\theta ^{\left( 1 \right)}} = \left[ {\begin{array}{*{20}{c}}
0\\
5\\
0
\end{array}} \right],{\theta ^{\left( 2 \right)}} = \left[ {\begin{array}{*{20}{c}}
0\\
5\\
0
\end{array}} \right],{\theta ^{\left( 3 \right)}} = \left[ {\begin{array}{*{20}{c}}
0\\
0\\
5
\end{array}} \right],{\theta ^{\left( 4 \right)}} = \left[ {\begin{array}{*{20}{c}}
0\\
0\\
5
\end{array}} \right]\]

分析:对于电影“Love at last”,我们知道 Alice 和 Bob 喜欢这部电影,Carol 和 Dave 不喜欢这部电影;而 Alice 和 Bob 又都喜欢“浪漫电影”,Carol 和 Dave 又都不喜欢“浪漫”电影,我们可以推断这部电影是“浪漫”电影,而不是“动作电影”,即(x1 = 1.0, x2 = 0.0)

运用公式表达就是

\[\begin{array}{l}
{\left( {{\theta ^{\left( 1 \right)}}} \right)^T}{x^{\left( 1 \right)}} \approx 5\\
{\left( {{\theta ^{\left( 2 \right)}}} \right)^T}{x^{\left( 1 \right)}} \approx 5\\
{\left( {{\theta ^{\left( 3 \right)}}} \right)^T}{x^{\left( 1 \right)}} \approx 0\\
{\left( {{\theta ^{\left( 4 \right)}}} \right)^T}{x^{\left( 1 \right)}} \approx 0
\end{array}\]

这样,在已知 θ 的情况下得到

\[{x^{\left( 1 \right)}} = \left[ {\begin{array}{*{20}{c}}
1\\
{1.0}\\
{0.0}
\end{array}} \right]\]

-------------------------------------------------------------------------

这时,我们的问题就转化成已知 θ(i),..., θ(nu)

学习 x(i)

问题转化为

\[\underbrace {\min }_{{x^{\left( j \right)}}}\frac{1}{2}\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \frac{\lambda }{2}\sum\limits_{k = 1}^n {{{\left( {x_k^{\left( j \right)}} \right)}^2}} \]

对于所有 x(i),..., x(nm)。问题为

\[\underbrace {\min }_{{x^{\left( 1 \right)}},...,{x^{\left( {{n_m}} \right)}}}\frac{1}{2}\sum\limits_{j = 1}^{{n_m}} {\left[ {\sum\limits_{i:{r^{\left( {i,j} \right)}} = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \lambda \sum\limits_{k = 1}^n {{{\left( {x_k^{\left( i \right)}} \right)}^2}} } \right]} \]


 

因此,对于给定 x(i),..., x(nm) 和 “电影评分”,可以评价 θ(i),..., θ(nu)

给定 θ(i),..., θ(nu) 和 “电影评分”,可以评价 x(i),..., x(nm)。 

当遇到问题时,可以

随机猜测 θ-->x-->θ-->x-->θ-->x-->...

-------------------------------------------------------------------------

在“协同过滤”应用中,并不是θ-->x-->θ-->x-->θ-->x-->...,而是将两者结合在一起

\[J\left( {{x^{\left( 1 \right)}},...,{x^{\left( {{n_m}} \right)}},{\theta ^{\left( 1 \right)}},...,{\theta ^{\left( {{n_u}} \right)}}} \right) = \frac{1}{2}\sum\limits_{\left( {i,j} \right):r\left( {i,j} \right) = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \frac{\lambda }{2}\sum\limits_{i = 1}^{{n_m}} {\sum\limits_{j = 1}^n {{{\left( {x_k^{\left( i \right)}} \right)}^2}} }  + \frac{\lambda }{2}\sum\limits_{j = 1}^{{n_u}} {\sum\limits_{j = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} } \]

\[\underbrace {\min }_{{x^{\left( 1 \right)}},...,{x^{\left( {{n_m}} \right)}},{\theta ^{\left( 1 \right)}},...,{\theta ^{\left( {{n_u}} \right)}}}J\left( {{x^{\left( 1 \right)}},...,{x^{\left( {{n_m}} \right)}},{\theta ^{\left( 1 \right)}},...,{\theta ^{\left( {{n_u}} \right)}}} \right)\]

-------------------------------------------------------------------------

总结:协同过滤算法

  • 随机初始化x(i),..., x(nm), θ(i),..., θ(nu)为小的随机值
  • 运用梯度下降算法或者别的优化算法最小化 J(x(i),..., x(nm), θ(i),..., θ(nu))
  • 当用户给定他的 θ 时,就可以结合算法学习得来的 x,运用 (θ(j))Tx 预测电影的得分。

-------------------------------------------------------------------------

协同算法的矩阵实现

对于数据

Movie Alice (1) Bob (2) Carol (3) Dave (4)
Love at last 5 5 0 0
Romance forever 5 ? ? 0
Cute puppies of love ? 4 0 ?
Nonstop car chases 0 0 5 4
Swords vs. karate 0 0 5 ?

如果定义

\[Y = \left[ {\begin{array}{*{20}{c}}
5&5&0&0\\
5&?&?&0\\
?&4&0&?\\
0&0&5&4\\
0&0&5&0
\end{array}} \right]\]

\[\Pr edictedratings = \left[ {\begin{array}{*{20}{c}}
{{{\left( {{\theta ^{\left( 1 \right)}}} \right)}^T}\left( {{x^{\left( 1 \right)}}} \right)}&{{{\left( {{\theta ^{\left( 2 \right)}}} \right)}^T}\left( {{x^{\left( 1 \right)}}} \right)}&.&{{{\left( {{\theta ^{\left( {{n_u}} \right)}}} \right)}^T}\left( {{x^{\left( 1 \right)}}} \right)}\\
{{{\left( {{\theta ^{\left( 1 \right)}}} \right)}^T}\left( {{x^{\left( 2 \right)}}} \right)}&{{{\left( {{\theta ^{\left( 2 \right)}}} \right)}^T}\left( {{x^{\left( 2 \right)}}} \right)}&.&{{{\left( {{\theta ^{\left( {{n_u}} \right)}}} \right)}^T}\left( {{x^{\left( 2 \right)}}} \right)}\\
.&.&.&.\\
{{{\left( {{\theta ^{\left( 1 \right)}}} \right)}^T}\left( {{x^{\left( {{n_m}} \right)}}} \right)}&{{{\left( {{\theta ^{\left( 2 \right)}}} \right)}^T}\left( {{x^{\left( {{n_m}} \right)}}} \right)}&.&{{{\left( {{\theta ^{\left( {{n_u}} \right)}}} \right)}^T}\left( {{x^{\left( {{n_m}} \right)}}} \right)}
\end{array}} \right]\]

\[X = \left[ {\begin{array}{*{20}{c}}
{ - {{\left( {{x^{\left( 1 \right)}}} \right)}^T} - }\\
{ - {{\left( {{x^{\left( 2 \right)}}} \right)}^T} - }\\
.\\
{ - {{\left( {{x^{\left( {{n_m}} \right)}}} \right)}^T} - }
\end{array}} \right],\Theta = \left[ {\begin{array}{*{20}{c}}
{ - {{\left( {{\theta ^{\left( 1 \right)}}} \right)}^T} - }\\
{ - {{\left( {{\theta ^{\left( 2 \right)}}} \right)}^T} - }\\
.\\
{ - {{\left( {{\theta ^{\left( {{n_u}} \right)}}} \right)}^T} - }
\end{array}} \right]\]

\[\Pr edictedratings = X{\Theta ^T}\]

-------------------------------------------------------------------------

发现电影的相关性

如果你通过上述算法得到了电影的特征 x(i)。

现在有 5 个已知的电影和它们的特征,如何判断上述特征为 x(i) 的的电影与现有的先惯性大呢?

分别计算这五个电影与上述电影的“距离”,并寻找最小的距离的那个电影就是与这个电影相关性较大的

\[\left\| {{x^{\left( i \right)}} - {x^{\left( j \right)}}} \right\|\]

-------------------------------------------------------------------------

协同过滤算法中的均值归一化

对于数据,如果出现用户没有对任何电影评分

Movie Alice (1) Bob (2) Carol (3) Dave (4) Eve (5)
Love at last 5 5 0 0 ?
Romance forever 5 ? ? 0 ?
Cute puppies of love ? 4 0 ? ?
Nonstop car chases 0 0 5 4 ?
Swords vs. karate 0 0 5 ?

?

 

这种情况下,在最小化代价函数时

\[\underbrace {\min }_{{x^{\left( 1 \right)}},...,{x^{\left( {{n_m}} \right)}},{\theta ^{\left( 1 \right)}},...,{\theta ^{\left( {{n_u}} \right)}}}\frac{1}{2}\sum\limits_{\left( {i,j} \right):r\left( {i,j} \right) = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}}  + \frac{\lambda }{2}\sum\limits_{i = 1}^{{n_m}} {\sum\limits_{j = 1}^n {{{\left( {x_k^{\left( i \right)}} \right)}^2}} }  + \frac{\lambda }{2}\sum\limits_{j = 1}^{{n_u}} {\sum\limits_{j = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} } \]

对于公示的第一部分

\[\frac{1}{2}\sum\limits_{\left( {i,j} \right):r\left( {i,j} \right) = 1} {{{\left( {{{\left( {{\theta ^{\left( j \right)}}} \right)}^T}\left( {{x^{\left( i \right)}}} \right) - {y^{\left( {i,j} \right)}}} \right)}^2}} \]

由于没有 r(i, j) = 1 的情况,所以这部分无用

对于

\[\frac{\lambda }{2}\sum\limits_{j = 1}^{{n_u}} {\sum\limits_{j = 1}^n {{{\left( {\theta _k^{\left( j \right)}} \right)}^2}} } \]

最小化这个部分的结果是(假设电影有两个特征)

\[{\theta ^{\left( 5 \right)}} = \left[ {\begin{array}{*{20}{c}}
0\\
0
\end{array}} \right]\]

进而导致预测结果 

\[{\left( {{\theta ^{\left( 5 \right)}}} \right)^T}\left( {{x^{\left( i \right)}}} \right) = 0\]

可以看出这样是不对的或者无意义的。

均值归一化的做法是将 Y 减去每一行的均值

\[Y = \left[ {\begin{array}{*{20}{c}}
5&5&0&0&?\\
5&?&?&0&?\\
?&4&0&?&?\\
0&0&5&4&?\\
0&0&5&0&?
\end{array}} \right],\mu = \left[ {\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{2.5}\\
{2.5}
\end{array}}\\
2\\
{2.25}\\
{1.25}
\end{array}} \right]\]

\[Y = Y - \mu = \left[ {\begin{array}{*{20}{c}}
{2.5}&{2.5}&{ - 2.5}&{ - 2.5}&?\\
{2.5}&?&?&{ - 2.5}&?\\
?&2&{ - 2}&?&?\\
{ - 2.25}&{ - 2.25}&{2.75}&{1.75}&?\\
{ - 1.25}&{ - 1.25}&{3.75}&{ - 1.25}&?
\end{array}} \right]\]

用新的 Y 取训练模型得到参数 x,当预测用户 j 对点电影 i 的评分时,预测结果应该是

\[{\left( {{\theta ^{\left( 5 \right)}}} \right)^T}\left( {{x^{\left( i \right)}}} \right) + {\mu _i}\]

这时,对于用户 Eve 的预测结果就是其它评分的均值

\[{\left( {{\theta ^{\left( 5 \right)}}} \right)^T}\left( x \right) + {\mu _i} = \left[ {\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{2.5}\\
{2.5}
\end{array}}\\
2\\
{2.25}\\
{1.25}
\end{array}} \right]\]

posted @ 2018-11-05 12:05  qkloveslife  阅读(340)  评论(0编辑  收藏  举报