深度变分信息瓶颈——Deep Variational Information Bottleneck
Deep Variational Information Bottleneck (VIB) 变分信息瓶颈 论文阅读笔记。本文利用变分推断将信息瓶颈框架适应到深度学习模型中,可视为一种正则化方法。
变分信息瓶颈
假设数据输入输出对为$(X,Y)$,假设判别模型$f_\theta(\cdot)$有关于$X$的中间表示$Z$,本文旨在优化$\theta$以最小化互信息$I(Z;X)$ ,同时最大化互信息$I(Z;Y)$,即:
$\max\limits_{\theta}I(Z;Y|\theta)-\beta I(Z;X|\theta)$
其中$\beta>0$为平衡系数。直觉理解,上式期望$Z$能保留更少$X$信息的同时能较好用于预测$Y$。那么如何构造相应的深度学习模型以及相应的优化方案?下面推导上式的下界,使其下界变大,上式即可变大。为了简化,下面去掉$\theta$进行推导。
下界1
首先,$I(Z;Y)$展开为:
$\displaystyle I(Z; Y) = \int \int p(y, z) \log \frac{p(y|z)}{p(y)} \, dy \, dz$
其中$p(y)$是数据的标签分布,已知。未知而需要进行处理的是其中的$p(y,z)$和$p(y|z)$,也就是模型需要拟合的分布。对于$p(y|z)$,可以用一个解码器$q(y|z)$来拟合,即文中所谓的变分估计。利用KL散度的大于零性质,有以下不等式:
\begin{align*} &\text{KL}(p(Y|Z),q(Y|Z))\geq 0\\ \implies &\int \, p(y|z) \log \frac{p(y|z)}{q(y|z)} dy\geq 0\\ \implies &\int \, \frac{p(y,z)}{p(z)} \log \frac{p(y|z)}{q(y|z)} dy\geq 0\\ \implies &\int \, p(y,z) \log p(y|z) dy\geq \int \, p(y,z) \log q(y|z)dy\\ \end{align*}
则有
\begin{align*} \displaystyle I(Z; Y) &= \int \int p(y, z) \log p(y|z) - p(y, z) \log p(y) \, dy \, dz\\ &\geq \int \int p(y, z) \log q(y|z) - p(y, z) \log p(y) \, dy \, dz\\ &= \int \int \, p(y, z) \log q(y|z) dy \, dz - \int \, p(y) \log p(y) dy \\ &= \int \int \, p(y, z) \log q(y|z)dy \, dz + H(Y) \end{align*}
对于其中的$p(y,z)$,本文基于马尔科夫假设:$Y\leftrightarrow X\leftrightarrow Z$。这个假设表明,$Y$和$Z$在$X$的条件下独立(那在优化时呢?$Z$是关于$X$和$Y$的联合分布进行更新的)。有:
$\displaystyle p(y,z)=\int p(x,y,z)dx=\int p(x,y)p(z|x,y)dx= \int p(x,y)p(z|x)dx$
此外,由于$H(Y)$已知且固定,可忽略。则有
$\displaystyle I(Z; Y) \geq \int \int \int \, p(x,y)p(z|x) \log q(y|z)dx \, dy \, dz$
其中,$p(x,y)$是真实数据分布,$p(z|x)$是原始模型关于$x$对中间表示$z$的推理分布。
上界2
$I(Z;X)$展开为:
$\displaystyle I(Z;X)=\int \int p(x,z)\log \frac{p(z|x)}{p(z)}dx\,dz$
对于其中的$p(z)$,作者用另一个变分估计$r(z)$来拟合。由于有
\begin{align*} &\text{KL}(p(Z),r(Z))\geq 0\\ \implies&\int p(z)\log p(z)dz\geq\int p(z)\log r(z)dz\\ \implies&\int\int p(x,z)\log p(z)dx\,dz\geq\int \int p(x,z)\log r(z)dx\,dz \end{align*}
则有
\begin{align*} I(Z;X)\leq \int\int p(x)p(z|x)\log \frac{p(z|x)}{r(z)}dx\,dz \end{align*}
总体下界和优化
结合下界1和上界2,有:
\begin{align*} &I(Z; Y) - \beta I(Z; X) \\ \geq&\int \int \int \, p(x,y)p(z|x) \log q(y|z)dx \, dy \, dz - \beta \int\int p(x)p(z|x)\log \frac{p(z|x)}{r(z)}dx\,dz = L \end{align*}
针对上式,用经验分布来代替真实分布。即用$\frac{1}{N}\sum_{n=1}^N\delta_{x_n}(x)$代替$p(x)$,用$\frac{1}{N}\sum_{n=1}^N\delta_{y_n}(y)$代替$p(y)$,用$\frac{1}{N}\sum_{n=1}^N\delta_{(x_n,y_n)}(x,y)$代替$p(x,y)$。其中$\delta_{x_n}(x)$表示狄拉克函数,其空间内积分为1,且仅在$x_n$上非零。假设经验分布有$N$各样本$\{(x_n,y_n)\}_{n=1}^N$。实际上直接把概率积分改成离散样本的求和取平均即可。则上式可被估计为:
$\displaystyle L\approx \frac{1}{N}\sum\limits_{n=1}^N\int p(z|x_n)\log q(y_n|z)-\beta\, p(z|x_n)\log\frac{p(z|x_n)}{r(z)}\, dz$
文中将$z$视为隐变量,利用VAE的重参数技巧将$p(z|x_n)$实现为一个关于$x_n$的正态分布$\mathcal{N}(f_e^\mu(x_n),f_e^{\Sigma}(x_n))$,其中$f_e^\mu(x_n),f_e^\Sigma(x_n)$分别为基于$x_n$生成的均值和协方差矩阵。将$z$抽样表示为$f(x_n,\epsilon)= f_e^{\Sigma}(x_n))\epsilon + f_e^\mu(x_n) $,其中$\epsilon\sim \mathcal{N}(0,1)$。则最大化$L$可表示为最小化:
$\displaystyle J_{IB} = \frac{1}{N}\sum\limits_{n=1}^N \mathbb{E}_{\epsilon\sim \mathcal{N}(0,1)}\left[-\log q(y_n|f(x_n,\epsilon))\right] + \beta\,\text{KL}\left[p(Z|x_n);r(z)\right]$
其中$r(z)$利用某一特定分布实现,文中使用标准正态分布实现。
直觉理解
直觉上理解:模型要把每个$x_n$分别映射到特定的分布,这些分布既不能偏离标准正态分布太远,又需要让模型后续能根据这些分布的抽样来预测$x_n$的标签。那么这种做法为什么能从$x_n$中抽取对预测$y_n$有效的关键信息而忽略无关信息呢(即信息瓶颈)?我的理解是,模型被惩罚以使不同$x_n$得到的$z_n$分布靠近同一分布,但为了有效预测$y_n$,又必须产生一定的不一致。不同$x_n$对应的$z$分布越一致,通过$z$而流向$y$的差异性信息将越少,导致$q$更难利用采样的$z$预测$y$,从而促使模型忽略$x$中的冗余信息而保留预测$y$所需的关键信息。$\beta$则用于控制$z$保留$x$信息的程度,越大保留信息越少。
相较于一般的判别模型:当不把$z $视为隐变量,而变成关于$x$唯一确定的中间表示时,就是一般的判别模型。这种方式隐式地假定了表示的连续性,然而无法确保所有$z$都不是被离散地分散在表示空间中。最坏的过拟合情况下,每个$(x_n,y_n)$都孤立地确定了一个中间表示$z_n$来实现一一映射,导致无泛化。而对于使用了信息瓶颈$z$的判别模型,由于$x$仅仅确定$z$的生成分布,不同的$x_i,x_j$依然可能抽样出同一个$z$,这种模式强制这个抽样出的$z $必须共享这两个样本的相似信息并忽略不同的信息,从而表示语义的相似性被强制由线性距离控制,实现表示语义的连续性,从而显式地确定了模型的泛化。
实验
表1:信息瓶颈加成的模型和各种正则化后模型的对比。
图1:不同$\beta$、$z$维度$K$下VIB模型在MNIST上的错误率,以及两个互信息的平衡。
图2:$z$维度$K=2$时,1000张图片的$z$分布的可视化。
后续是一些对抗鲁棒的实验,不记录