生成式学习算法(一)之----概论

到目前为止,我们主要讨论给定\(x\)\(y\)的条件分布\(p(y | x ; \theta)\)进行建模的学习算法。例如,对于逻辑斯蒂克(logistic)回归模型,这个条件概率为\(h_{\theta}(x)=sigmoid\left(\theta^{T} x\right)\)。对于二分类问题,logistic回归和感知机算法通过找一条直线,也就是决策边界,尽可能把这两个类分开来。像这种直接学习条件分布\(p(y | x)\)(logistic回归模型),或者从输入空间\(\mathcal{X}\)到输出映射的算法(感知机算法)叫做判别式学习算法(discriminative learning algorithms)。

现在我们将讨论一种不同类型的学习算法。比如说现有二分类问题,区分大象和狗。则这种算法先看大象长什么样,然后对于大象长什么样建一个模型,然后再看狗长什么样,对于狗长什么样再建立一个模型。最后来了一个新的动物,算法就把这个动物和大象的模型和狗的模型分别匹配,看这个新动物更像更像哪种动物。

像这种直接对\(p(x | y)\)\(p(y)\)类先验class priors)进行建模的算法叫做生成式学习算法(generative learning algorithms)。例如,如果 $ y=0$ 代表一个样例是是狗,或者大象$ y=1$,则 \(p(x | y=0 )\) 对狗的特征分布进行建模,而 \(p(x | y=1)\) 对大象的特征分布进行建模。有了这两个概率,我们就可以通过下面的贝叶斯法则(Bayes rule)推出给定\(x\)\(y\)的后验概率分布(posterior distribution),

\[\begin{equation} p(y | x)=\frac{p(x | y) p(y)}{p(x)} \end{equation} \]

这里分母可以表示成\(p(x)=p(x | y=1)p( y=1)+p(x | y=0)p( y=0)\)。也就是说可以表达成我们已经学到的\(p(x | y)\)\(p(y)\)的形式。事实上,如果我们要通过计算条件概率去做预测,则我们不需要计算分母,这是因为,

\[\begin{equation} \begin{aligned} \arg \max _{y} p(y | x) &=\arg \max _{y} \frac{p(x | y) p(y)}{p(x)} \\ &=\arg \max _{y} p(x | y) p(y) \end{aligned} \end{equation} \]

https://www.pornhub.com/view_video.php?viewkey=ph5d349aa97e027 监禁过程有点漫长,学日语

posted @ 2019-09-22 15:40  客忆安排  阅读(530)  评论(0编辑  收藏  举报