[LINUX-01]对比LINUX和CORTEX-M启动流程

1 CORTEX-M

1.1 boot程序

以stm32为例,添加在线升级boot程序,rom地址:

LR_IROM1 0x08000000 0x00004000  {    ; load region size_region
  ER_IROM1 0x08000000 0x00004000  {  ; load address = execution address
   *.o (RESET, +First)
   *(InRoot$$Sections)
   .ANY (+RO)
  }
  RW_IRAM1 0x20000000 0x00020000  {  ; RW data
   .ANY (+RW +ZI)
  }
}

boot引导应用程序:

#define APPLICATION_ADDRESS   (uint32_t)0x08004000

            
JumpAddress = *(__IO uint32_t*) (APPLICATION_ADDRESS + 4);
      /* Jump to user application */
      Jump_To_Application = (pFunction) JumpAddress;
      /* Initialize user application's Stack Pointer */
      __set_MSP(*(__IO uint32_t*) APPLICATION_ADDRESS);
      Jump_To_Application();

 

 1.2 应用程序

rom地址 

LR_IROM1 0x08004000 0x0001c000  {    ; load region size_region
  ER_IROM1 0x08004000 0x00300000  {  ; load address = execution address
   *.o (RESET, +First)
   *(InRoot$$Sections)
   .ANY (+RO)
  }
  RW_IRAM1 0x20000000 0x00020000  {  ; RW data
   .ANY (+RW +ZI)
  }
}

 

启动汇编文件startup***.s中

Stack_Size      EQU     0x00000400  
;Stack_Size      EQU     0x00001000
    ,,,
Reset_Handler   PROC
                EXPORT  Reset_Handler                     [WEAK]
                IMPORT  SystemInit
                IMPORT  __main

2 对于LINUX的引导和启动过程

2.1 uboot

mian_loop中有

#define CONFIG_BOOTDELAY 3  //设置启动延时时间

//如果延时大于等于零,并且没有在延时过程中接收到按键,则引导内核

if (bootdelay >= 0 && s && !abortboot (bootdelay)) { //

# ifdef CONFIG_AUTOBOOT_KEYED

      intprev = disable_ctrlc(1);/* disable Control C checking */

# endif   //状态设置

 

# ifndef CFG_HUSH_PARSER

        {

             printf("Booting Linux ...\n");       //启动 linux   

         run_command (s, 0);  //运行引导内核的命令,s=getenv("bootcmd")           

        }

 

加载linux内核时将使用变量“bootcmd”和 “bootargs”,

变量“bootcmd”和 “bootargs”的值可以在在加载linux内核前,

uboot的命令控制台中进行修改

 bootcmd=nand read.jffs2 0x30007FC0 kernel; bootm 0x30007FC0

 

第一条命令  从flash上读出内核   kernel是一个分区标志

第二条命令  启动命令指示了启动地址

bootargs是其它参数信息, run_command (getenv ("bootcmd"), flag)

bootcmd中的bootm,即boot application image from memory

参数形式:"bootm addr",当addr省略的时候bootm加载默认的配置宏

#define CONFIG_SYS_LOAD_ADDR  0x30008000  /* default load address */

 

2.2 linux内核态

查找标签__mmap_switched所在位置:/linux/arch/arm/kernel/head-common.S

__mmap_switched:
/*
* The following fragment of code is executed with the MMU on in MMU mode,
* and uses absolute addresses; this is not position independent.
*
* r0 = cp#15 control register
* r1 = machine ID
* r2 = atags/dtb pointer
* r9 = processor ID
*/
//保存设备信息、设备树及启动参数存储地址
,,
b    start_kernel

 

函数所在位置:/linux/init/Main.c,start_kernel涉及大量初始化工作,只例举重要的初始化工作。

asmlinkage void __init start_kernel(void)
{
…… //类型判断
smp_setup_processor_id(); //smp相关,返回启动CPU号
……
local_irq_disable(); //关闭当前CPU中断
early_boot_irqs_disabled = true;
/*
* Interrupts are still disabled. Do necessary setups, then
* enable them
*/
boot_cpu_init();
page_address_init(); //初始化页地址
pr_notice("%s", linux_banner); //显示内核版本信息
setup_arch(&command_line);
mm_init_owner(&init_mm, &init_task);
mm_init_cpumask(&init_mm);
setup_command_line(command_line);
setup_nr_cpu_ids();
setup_per_cpu_areas();
smp_prepare_boot_cpu();    /* arch-specific boot-cpu hooks */

build_all_zonelists(NULL, NULL);
page_alloc_init(); //页内存申请初始化

pr_notice("Kernel command line: %s\n", boot_command_line); //打印内核启动命令行参数
parse_early_param();
parse_args("Booting kernel", static_command_line, __start___param,
__stop___param - __start___param,
-1, -1, &unknown_bootoption);

……
/*
* Set up the scheduler prior starting any interrupts (such as the
* timer interrupt). Full topology setup happens at smp_init()
* time - but meanwhile we still have a functioning scheduler.
*/
sched_init(); //进程调度器初始化
/*
* Disable preemption - early bootup scheduling is extremely
* fragile until we cpu_idle() for the first time.
*/
preempt_disable(); //禁止内核抢占
if (WARN(!irqs_disabled(), "Interrupts were enabled *very* early, fixing it\n"))
local_irq_disable(); //检查关闭CPU中断


/*大量初始化内容 见名知意*/
idr_init_cache();
rcu_init();
tick_nohz_init();
context_tracking_init();
radix_tree_init();
/* init some links before init_ISA_irqs() */
early_irq_init();
init_IRQ();
tick_init();
init_timers();
hrtimers_init();
softirq_init();
timekeeping_init();
time_init();
sched_clock_postinit();
perf_event_init();
profile_init();
call_function_init();
WARN(!irqs_disabled(), "Interrupts were enabled early\n");
early_boot_irqs_disabled = false;
local_irq_enable(); //本地中断可以使用了

kmem_cache_init_late();

/*
* HACK ALERT! This is early. We're enabling the console before
* we've done PCI setups etc, and console_init() must be aware of
* this. But we do want output early, in case something goes wrong.
*/
console_init(); //初始化控制台,可以使用printk了
if (panic_later)
panic("Too many boot %s vars at `%s'", panic_later,
panic_param);

lockdep_info();

/*
* Need to run this when irqs are enabled, because it wants
* to self-test [hard/soft]-irqs on/off lock inversion bugs
* too:
*/
locking_selftest();

#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start && !initrd_below_start_ok &&
page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
page_to_pfn(virt_to_page((void *)initrd_start)),
min_low_pfn);
initrd_start = 0;
}
#endif
page_cgroup_init();
debug_objects_mem_init();
kmemleak_init();
setup_per_cpu_pageset();
numa_policy_init();
if (late_time_init)
late_time_init();
sched_clock_init();
calibrate_delay();
pidmap_init();
anon_vma_init();
acpi_early_init();
#ifdef CONFIG_X86
if (efi_enabled(EFI_RUNTIME_SERVICES))
efi_enter_virtual_mode();
#endif
#ifdef CONFIG_X86_ESPFIX64
/* Should be run before the first non-init thread is created */
init_espfix_bsp();
#endif
thread_info_cache_init();
cred_init();
fork_init(totalram_pages); //初始化fork
proc_caches_init();
buffer_init();
key_init();
security_init();
dbg_late_init();
vfs_caches_init(totalram_pages); //虚拟文件系统初始化
signals_init();
/* rootfs populating might need page-writeback */
page_writeback_init();
#ifdef CONFIG_PROC_FS
proc_root_init();
#endif
cgroup_init();
cpuset_init();
taskstats_init_early();
delayacct_init();

check_bugs();

sfi_init_late();

if (efi_enabled(EFI_RUNTIME_SERVICES)) {
efi_late_init();
efi_free_boot_services();
}

ftrace_init();

/* Do the rest non-__init'ed, we're now alive */
rest_init();
}
函数最后调用rest_init()函数

/*最重要使命:创建kernel_init进程,并进行后续初始化*/
static noinline void __init_refok rest_init(void)
{
int pid;

rcu_scheduler_starting();
/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/

kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND); //创建kernel_init进程

numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();
complete(&kthreadd_done);

/*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
schedule_preempt_disabled();
/* Call into cpu_idle with preempt disabled */
//cpu_idle就是在系统闲置时用来降低电力的使用和减少热的产生的空转函数,函数至此不再返回,其余工作从kernel_init进程处发起
cpu_startup_entry(CPUHP_ONLINE);
}
kernel_init函数将完成设备驱动程序的初始化,并调用init_post函数启动用户进程

部分书籍介绍的内核启动流程基于经典的2.6版本,kernel_init函数还会调用init_post函数专门负责_init进程的启动,现版本已经被整合到了一起。

static int __ref kernel_init(void *unused)
{
int ret;

kernel_init_freeable(); //该函数中完成smp开启 驱动初始化 共享内存初始化等工作
/* need to finish all async __init code before freeing the memory */
async_synchronize_full();
free_initmem(); //初始化尾声,清除内存无用数据
mark_rodata_ro();
system_state = SYSTEM_RUNNING;
numa_default_policy();

flush_delayed_fput();

if (ramdisk_execute_command) {
ret = run_init_process(ramdisk_execute_command);
if (!ret)
return 0;
pr_err("Failed to execute %s (error %d)\n",
ramdisk_execute_command, ret);
}

/*
* We try each of these until one succeeds.
*
* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine.
*寻找init函数,创建一号进程_init (第一个用户空间进程)*/
if (execute_command) {
ret = run_init_process(execute_command);
if (!ret)
return 0;
pr_err("Failed to execute %s (error %d). Attempting defaults...\n",
execute_command, ret);
}
if (!try_to_run_init_process("/sbin/init") ||
!try_to_run_init_process("/etc/init") ||
!try_to_run_init_process("/bin/init") ||
!try_to_run_init_process("/bin/sh"))
return 0;

panic("No working init found. Try passing init= option to kernel. "
"See Linux Documentation/init.txt for guidance.");
}
static int __ref kernel_init(void *unused)
{
int ret;

kernel_init_freeable(); //该函数中完成smp开启 驱动初始化 共享内存初始化等工作
/* need to finish all async __init code before freeing the memory */
async_synchronize_full();
free_initmem(); //初始化尾声,清除内存无用数据
mark_rodata_ro();
system_state = SYSTEM_RUNNING;
numa_default_policy();

flush_delayed_fput();

if (ramdisk_execute_command) {
ret = run_init_process(ramdisk_execute_command);
if (!ret)
return 0;
pr_err("Failed to execute %s (error %d)\n",
ramdisk_execute_command, ret);
}

/*
* We try each of these until one succeeds.
*
* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine.
*寻找init函数,创建一号进程_init (第一个用户空间进程)*/
if (execute_command) {
ret = run_init_process(execute_command);
if (!ret)
return 0;
pr_err("Failed to execute %s (error %d). Attempting defaults...\n",
execute_command, ret);
}
if (!try_to_run_init_process("/sbin/init") ||
!try_to_run_init_process("/etc/init") ||
!try_to_run_init_process("/bin/init") ||
!try_to_run_init_process("/bin/sh"))
return 0;

panic("No working init found. Try passing init= option to kernel. "
"See Linux Documentation/init.txt for guidance.");
}
 

 

到此,内核初始化已经接近尾声,所有的初始化函数都已经调用,因此free_initmem函数可以舍弃内存的__init_begin至__init_end之间的数据。

当内核被引导并进行初始化后,内核启动了自己的第一个用户空间应用程序_init,这是调用的第一个使用标准C库编译的程序,其进程编号时钟为1.

_init负责出发其他必须的进程,以使系统进入整体可用的状态。

以下为内核启动流程图:

 

图片来源:https://blog.csdn.net/perfect1t/article/details/81741531

参考:https://blog.csdn.net/perfect1t/article/details/81741531

---

 

https://blog.csdn.net/perfect1t/article/details/81741531

posted @ 2020-04-14 19:15  瘋耔  阅读(471)  评论(0编辑  收藏  举报
跳至侧栏