Processing math: 100%

☆ [HDU2089] 不要62「数位DP」

类型:数位DP

传送门:>Here<

题意:问区间[n,m]的数字中,不含4以及62的数字总数

解题思路

数位DP入门题

先考虑一般的暴力做法,整个区间扫一遍,判断每个数是否合法并累计答案。而数位DP则认为可以换一种方法来枚举,找到对于一个数的上限,然后在这个限度内枚举每一个数位来统计答案

为了方便数位DP,题意可以转化求区间[0,k]的符合要求的数字总数,因此答案就是ans(M)ans(N1)

首先我们可以预处理出dp数组:dp[i][j]表示以j开头的i位数的符合要求的数字总数;例如,dp[2][3]表示以3开头的2位数中符合要求的,也就是区间[30,39]中符合要求的。dp[i][j]=0k9 k4dp[i1][k]这个方程很好理解,相当于枚举一个数位塞到前面,同时需要保证不能把6塞当2前面,并且特判一下4就好了

至于统计答案,我们从上限的最高位开始往下扫描。这里有个很巧妙的思想——每次处理不超过当前这一位的部分。形象地说,对于数字21358,最高位扫描0 1,也就是把答案累积上dp[5][0 1]。这一步相当于处理了区间[0,19999]中的所有;此时默认最高位是2,扫描到下一位,累积dp[4][0 0],也就相当于处理了区间[20000,20999];依次类推,然后将会处理[21000,21299][21300,21349][21350,21357]。因此我们可以在O(lgN10)的复杂度内处理区间[0,N1]。(注意不包括N)ans=1i=numdigit[i]1j=0dp[i][j]

然后在来看判断62和4的问题:每当我们进入到下一位,我们就将默认上一位确定。此时若确定的那一位为4,那么之后的都不用考虑了(一定不合法)。同理,如果当前确定的为2且上一位确定的为6,那么也可以跳出。事实上,这个跳出不是优化,而是必须那么做——如果不跳出,就会错误地累积很多答案。同时,不仅进入下一位的时候要判断,扫描的时候也要判断。道理一样

拓展:如果题目要求的不是【不要62】而是【要62】呢?就好像[HDU3555] Bomb所要求的一样,只需要求出所有的【不要62】数字,用N减一下就好了

Code

特别需要注意的是digit[num+1]==0这一步的处理,如果不加这一步,那么如果在处理前一个数字时残留下了digit[num+1]==6,那么你的程序将不能在最高位填充2了!

另外还有dp数组的初始化问题:一种是dp[0][0]=1,或者对于所有i4dp[1][i]=1。其实这两者是等效的,因为在统计dp[1][i]时,只会累积到dp[0][0]为1

复制代码
/*By DennyQi 2018.8.13*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define  r  read()
#define  Max(a,b)  (((a)>(b)) ? (a) : (b))
#define  Min(a,b)  (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int MAXN = 10010;
const int MAXM = 27010;
const int INF = 1061109567;
inline int read(){
    int x = 0; int w = 1; register int c = getchar();
    while(c ^ '-' && (c < '0' || c > '9')) c = getchar();
    if(c == '-') w = -1, c = getchar();
    while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar(); return x * w;
}
int N,M,num,X,Y;
int dp[10][11],digit[10];
inline void Init(){
    dp[0][0] = 1;
    for(int i = 1; i <= 7; ++i){
        for(int j = 0; j <= 9; ++j){
            if(j == 4) continue;
            for(int k = 0; k <= 9; ++k){
                if(k == 2 && j == 6) continue;
                dp[i][j] += dp[i-1][k];
            }
        }
    }
}
inline int cul(int x){
    num = 0;
    int y = x, res = 0;
    while(y > 0){
        digit[++num] = y % 10;
        y /= 10;
    }
    digit[num+1] = -1;
    for(int i = num; i >= 1; --i){
        for(int j = 0; j < digit[i]; ++j){
            if(digit[i+1] == 6 && j == 2) continue;
            res += dp[i][j];
        }
        if(digit[i] == 4 || (digit[i+1]==6&&digit[i]==2)) break;
    }
    return res;
}
int main(){
    Init();
    for(;;){
        N = r, M = r;
        if(!N && !M) break;
        printf("%d\n",cul(M+1)-cul(N));
    }
    return 0;
}
复制代码
posted @   行而上  阅读(1117)  评论(0编辑  收藏  举报
编辑推荐:
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
阅读排行:
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· 没有源码,如何修改代码逻辑?
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
点击右上角即可分享
微信分享提示