Core源码(一) ConcurrentDictionary

 

先贴源码地址

https://github.com/dotnet/corefx/blob/master/src/System.Collections.Concurrent/src/System/Collections/Concurrent/ConcurrentDictionary.cs

.NET CORE很大一个好处就是代码的开源,你可以详细的查看你使用类的源代码,并学习微软的写法和实现思路。   

  这里我对.net core中ConcurrentDictionary源码进行了分析,里面采用了Volatile.Read和write(volatile作用:确保本条指令不会因编译器的优化而省略,且要求每次直接从内存地址读值,而不走寄存器),然后也使用了lock这种混合锁,而且还定义了更细颗粒度的锁。所以多线程使用ConcurrentDictionary集合还是比较好的选择。

       本来想把本篇放到我的《C#异步编程系列》,不过后来感觉那个系列写的已经算是收尾了,而且以后还会有写更多core源码分析的文字,所以就单独新增一个系列把。

ConcurrentDictionary内部私有类

先上源码,再仔细聊

/// <summary>
/// Tables that hold the internal state of the ConcurrentDictionary
///
/// Wrapping the three tables in a single object allows us to atomically
/// replace all tables at once.
/// </summary>
private sealed class Tables
{
    // A singly-linked list for each bucket.
    // 单链表数据结构的桶,里面的节点就是对应字典值
    internal readonly Node[] _buckets; 
    // A set of locks, each guarding a section of the table.
    //锁的数组
    internal readonly object[] _locks; 
    // The number of elements guarded by each lock.
    internal volatile int[] _countPerLock; 

    internal Tables(Node[] buckets, object[] locks, int[] countPerLock)
    {
        _buckets = buckets;
        _locks = locks;
        _countPerLock = countPerLock;
    }
}
/// <summary>
/// A node in a singly-linked list representing a particular hash table bucket.
/// 由Dictionary里的Entry改成Node,并且把next放到Node里
/// </summary>
private sealed class Node
{
    internal readonly TKey _key;
    internal TValue _value;
    internal volatile Node _next;
    internal readonly int _hashcode;

    internal Node(TKey key, TValue value, int hashcode, Node next)
    {
        _key = key;
        _value = value;
        _next = next;
        _hashcode = hashcode;
    }
}
private volatile Tables _tables; // Internal tables of the dictionary
private IEqualityComparer<TKey> _comparer; // Key equality comparer
// The maximum number of elements per lock before a resize operation is triggered
// 每个锁对应的元素最大个数,如果超过,要重新进行resize tables
private int _budget;    

  首先,内部类定义为私有且密封,这样就保证了无法从外部进行篡改,而且注意volatile关键字的使用,这确保了我们多线程操作的时候,最终都是去内存中读取对应地址的值和操作对应地址的值。

internal readonly object[] _locks;
internal volatile int[] _countPerLock;

以上两个类是为了高性能及并发锁所建立的对象,实际方法上锁时,使用如下语句

lock (tables._locks[lockNo])
Monitor.Enter(tables._locks[lockNo], ref lockTaken);

  以上两种调用方式是等价的,都会阻塞执行,直到获取到锁(对于Monitor我很多时候会尽可能使用TryEnter,毕竟不阻塞,不过这个类的实现一定要使用阻塞式的,这样程序逻辑才能继续往下走。更多关于Monitor我在 《C#异步编程(四)混合模式线程同步》里面有详细介绍)

这样,实现了颗粒化到每个单独的键值的锁,最大限度的保证了并发。

这里lockNo参数是通过GetBucketAndLockNo方法获取的,方法通过out变量返回值。

/// <summary>
/// Computes the bucket and lock number for a particular key.
///这里获取桶的索引和锁的索引,注意,锁的索引和桶未必是同一个值。 
/// </summary>
private static void GetBucketAndLockNo(int hashcode, out int bucketNo, out int lockNo, int bucketCount, int lockCount)
{
    bucketNo = (hashcode & 0x7fffffff) % bucketCount;
    lockNo = bucketNo % lockCount;
}

上面方法中

hashcode 是通过private IEqualityComparer<TKey> _comparer对象的GetHashCode方法通过key获取到的。

bucketCount是整个table的长度。

lockCount是现有的锁的数组

TryAdd方法

  我们从最简单的TryAdd方法开始介绍,这里ConcurrentDictionary类的封装非常合理,暴露出来的方法,很多是通过统一的内部方法进行执行,比如更新删除等操作等,都有类内部唯一的私有方法进行执行,然后通过向外暴漏各种参数不同的方法,来实现不同行为。

public bool TryAdd(TKey key, TValue value)
{
    if (key == null) ThrowKeyNullException();
    TValue dummy;
    return TryAddInternal(key, _comparer.GetHashCode(key), value, false, true, out dummy);
}

上面TryAddInternal的参数对应如下

/// <summary>
/// Shared internal implementation for inserts and updates.
/// If key exists, we always return false; and if updateIfExists == true we force update with value;
/// If key doesn't exist, we always add value and return true;
/// </summary>
private bool TryAddInternal(TKey key, int hashcode, TValue value, bool updateIfExists, bool acquireLock, out TValue resultingValue)

也就说说,updateIfExists为false,存在值的情况下,TryAdd不会更新原有值,而是直接返回false。我的多线程并发写库就是利用了这个特性,这个案例我会在本文最后介绍。现在我们来看TryAddInternal内部,废话不多说,上源码(大部分都注释过了,所以直接阅读即可)

//while包在外面,为了continue,如果发生了_tables私有变量在操作过程被其他线程修改的情况
while (true)
{
    int bucketNo, lockNo;
    //变量复制到方法本地变量  判断tables是否在操作过程中被其他线程修改。
    Tables tables = _tables;
    //提到过的获取桶的索引和锁的索引
    GetBucketAndLockNo(hashcode, out bucketNo, out lockNo, tables._buckets.Length, tables._locks.Length);
    //是否要扩大tables
    bool resizeDesired = false;
    //是否成功获取锁,成功的话会在final块中进行退出
    bool lockTaken = false;
    try
    {
        if (acquireLock)
            Monitor.Enter(tables._locks[lockNo], ref lockTaken);

        // If the table just got resized, we may not be holding the right lock, and must retry.
        // This should be a rare occurrence.
        if (tables != _tables)
        {
            continue;
        }

        // Try to find this key in the bucket
        Node prev = null;
        //这里如果找到对应地址为空,会直接跳出循环,说明对应的key没有添加锅
        //不为空的时候,会进行返回false(具体是否更新根据updateIfExists)(当然也存在会有相同_hashcode值的情况,所以还要对key进行判定,key不同,继续往后找,直到找到相同key)
        for (Node node = tables._buckets[bucketNo]; node != null; node = node._next)
        {
            Debug.Assert((prev == null && node == tables._buckets[bucketNo]) || prev._next == node);
            //对hashcode和key进行判定,确保找到的就是要更新的
            if (hashcode == node._hashcode && _comparer.Equals(node._key, key))
            {
                // The key was found in the dictionary. If updates are allowed, update the value for that key.
                // We need to create a new node for the update, in order to support TValue types that cannot
                // be written atomically, since lock-free reads may be happening concurrently.
                if (updateIfExists)
                {
                    if (s_isValueWriteAtomic)
                    {
                        node._value = value;
                    }
                    else
                    {
                        Node newNode = new Node(node._key, value, hashcode, node._next);
                        if (prev == null)
                        {
                            Volatile.Write(ref tables._buckets[bucketNo], newNode);
                        }
                        else
                        {
                            prev._next = newNode;
                        }
                    }
                    resultingValue = value;
                }
                else
                {
                    resultingValue = node._value;
                }
                return false;
            }
            prev = node;
        }

        // The key was not found in the bucket. Insert the key-value pair.
        Volatile.Write<Node>(ref tables._buckets[bucketNo], new Node(key, value, hashcode, tables._buckets[bucketNo]));
        checked
        {
            tables._countPerLock[lockNo]++;
        }

        //
        // If the number of elements guarded by this lock has exceeded the budget, resize the bucket table.
        // It is also possible that GrowTable will increase the budget but won't resize the bucket table.
        // That happens if the bucket table is found to be poorly utilized due to a bad hash function.
        //
        if (tables._countPerLock[lockNo] > _budget)
        {
            resizeDesired = true;
        }
    }
    finally
    {
        if (lockTaken)
            Monitor.Exit(tables._locks[lockNo]);
    }

    //
    // The fact that we got here means that we just performed an insertion. If necessary, we will grow the table.
    //
    // Concurrency notes:
    // - Notice that we are not holding any locks at when calling GrowTable. This is necessary to prevent deadlocks.
    // - As a result, it is possible that GrowTable will be called unnecessarily. But, GrowTable will obtain lock 0
    //   and then verify that the table we passed to it as the argument is still the current table.
    //
    if (resizeDesired)
    {
        GrowTable(tables);
    }

    resultingValue = value;
    return true;
}

 

ContainsKey和TryGetValue

ContainsKey和TryGetValue其实内部最后调用的都是私有TryGetValueInternal,这里ContainsKey调用TryGetValue。

ContainsKey方法

/// <summary>
/// Determines whether the ConcurrentDictionary{TKey, TValue} contains the specified key.
/// </summary>
/// <param name="key">The key to locate in the</param>
/// <returns>true if the ConcurrentDictionary{TKey, TValue} contains an element withthe specified key; otherwise, false.</returns>
public bool ContainsKey(TKey key)
{
    if (key == null) ThrowKeyNullException();
    TValue throwAwayValue;
    return TryGetValue(key, out throwAwayValue);
}

TryGetValue方法

/// <summary>
/// Attempts to get the value associated with the specified key from the ConcurrentDictionary{TKey,TValue}.
/// </summary>
/// <param name="key">The key of the value to get.</param>
/// <param name="value">When this method returns, <paramref name="value"/> contains the object from
/// the ConcurrentDictionary{TKey,TValue} with the specified key or the default value of
/// <returns>true if the key was found in the <see cref="ConcurrentDictionary{TKey,TValue}"/>;
/// otherwise, false.</returns>
public bool TryGetValue(TKey key, out TValue value)
{
    if (key == null) ThrowKeyNullException();
    return TryGetValueInternal(key, _comparer.GetHashCode(key), out value);
}

TryGetValueInternal方法

private bool TryGetValueInternal(TKey key, int hashcode, out TValue value)
{
    //用本地变量保存这个table的快照。
    // We must capture the _buckets field in a local variable. It is set to a new table on each table resize.
Tables tables = _tables;
//获取key对应的桶位置
    int bucketNo = GetBucket(hashcode, tables._buckets.Length);
    // We can get away w/out a lock here.
    // The Volatile.Read ensures that we have a copy of the reference to tables._buckets[bucketNo].
    // This protects us from reading fields ('_hashcode', '_key', '_value' and '_next') of different instances.
Node n = Volatile.Read<Node>(ref tables._buckets[bucketNo]);
//如果key相符 ,赋值,不然继续寻找下一个。
    while (n != null)
    {
        if (hashcode == n._hashcode && _comparer.Equals(n._key, key))
        {
            value = n._value;
            return true;
        }
        n = n._next;
    }
    value = default(TValue);//没找到就赋默认值
    return false;
}

 

TryRemove

 TryRemove方法

public bool TryRemove(TKey key, out TValue value)
{
    if (key == null) ThrowKeyNullException();
    return TryRemoveInternal(key, out value, false, default(TValue));
}

这个方法会调用内部私用的TryRemoveInternal

/// <summary>
/// Removes the specified key from the dictionary if it exists and returns its associated value.
/// If matchValue flag is set, the key will be removed only if is associated with a particular
/// value.
/// </summary>
/// <param name="key">The key to search for and remove if it exists.</param>
/// <param name="value">The variable into which the removed value, if found, is stored.</param>
/// <param name="matchValue">Whether removal of the key is conditional on its value.</param>
/// <param name="oldValue">The conditional value to compare against if <paramref name="matchValue"/> is true</param>
/// <returns></returns>
private bool TryRemoveInternal(TKey key, out TValue value, bool matchValue, TValue oldValue)
{
    int hashcode = _comparer.GetHashCode(key);
    while (true)
    {
        Tables tables = _tables;
        int bucketNo, lockNo;
        //这里获取桶的索引和锁的索引,注意,锁的索引和桶未必是同一个值,具体算法看源码。
        GetBucketAndLockNo(hashcode, out bucketNo, out lockNo, tables._buckets.Length, tables._locks.Length);
        //这里锁住的只是对应这个index指向的锁,而不是所有锁。
        lock (tables._locks[lockNo])
        {
            //这里table可能被重新分配,所以这里再次获取,看得到的是不是同一个table
            // If the table just got resized, we may not be holding the right lock, and must retry.
            // This should be a rare occurrence.
            if (tables != _tables)
            {
                continue;
            }

            Node prev = null;
            //这里同一个桶,可能因为连地址,有很多值,所以要对比key
            for (Node curr = tables._buckets[bucketNo]; curr != null; curr = curr._next)
            {
                Debug.Assert((prev == null && curr == tables._buckets[bucketNo]) || prev._next == curr);
                //对比是不是要删除的的那个元素
                if (hashcode == curr._hashcode && _comparer.Equals(curr._key, key))
                {
                    if (matchValue)
                    {
                        bool valuesMatch = EqualityComparer<TValue>.Default.Equals(oldValue, curr._value);
                        if (!valuesMatch)
                        {
                            value = default(TValue);
                            return false;
                        }
                    }
                    //执行删除,判断有没有上一个节点。然后修改节点指针或地址。
                    if (prev == null)
                    {
                        Volatile.Write<Node>(ref tables._buckets[bucketNo], curr._next);
                    }
                    else
                    {
                        prev._next = curr._next;
                    }

                    value = curr._value;
                    tables._countPerLock[lockNo]--;
                    return true;
                }
                prev = curr;
            }
        }
        value = default(TValue);
        return false;
    }
}

 

我的使用实例

       之前做项目时候,有个奇怪的场景,就是打电话的时候回调接口保存通话记录,这里通过CallId来唯一识别每次通话,但是前端程序是通过websocket跟通话服务建立连接(通话服务是另外一个公司做的)。客户是呼叫中心,一般在网页端都是多个页面操作,所以会有多个websocket连接,这时候每次通话,每个页面都会回调接口端,保存相同的通话记录,并发是同一时间的。

       我们最早考虑使用消息队列来过滤重复的请求,但是我仔细考虑了下,发现使用ConcurrentDictionary方式的实现更简单,具体实现如下(我精简了下代码):

private  static ConcurrentDictionary<string,string> _strDic=new ConcurrentDictionary<string, string>();
public async Task<BaseResponse> AddUserByAccount(string callId)
{
    if ( _strDic.ContainsKey(callId))
    {
        return BaseResponse.GetBaseResponse(BusinessStatusType.Failed,"键值已存在");
    }
    //成功写入
    if (_strDic.TryAdd(callId,callId))
    {
        var  recordExist =await _userRepository.FirstOrDefaultAsync(c => c.CallId == callId);
        if (recordExist ==null)
        {
            Record record=new Record
            {
                CallId = callId,
                …………
                …………
                IsVerify=1
            };
            _userRepository.Insert(record);
            _userRepository.SaveChanges();
        } 
        return BaseResponse.GetBaseResponse(BusinessStatusType.OK);
    }
    //尝试竞争线程,写入失败
    return BaseResponse.GetBaseResponse(BusinessStatusType.Failed,"写入失败");
}

  这里如果进行同时的并发请求,最后请求都可以通过if ( _strDic.ContainsKey(callId))的判定,因为所有线程同时读取,都是未写入状态。但是多个线程会在TryAdd时有竞争,而且ConcurrentDictionary的实现保证了只有一个线程可以成功更新,其他的都返回失败。

 

GetOrAdd方法线程不安全的探秘

这个是我写完本篇文字,无意浏览博客园时候看到的(文字地址https://www.cnblogs.com/CreateMyself/p/6086752.html),自己试了下,确实会出现线程不安全。原本实例如下

基本程序

class Program
{
    private static readonly ConcurrentDictionary<string, string> _dictionary
        = new ConcurrentDictionary<string, string>();
    private static int _runCount = 0;
    public static void Main(string[] args)
    {
        var task1 = Task.Run(() => PrintValue("JeffckWang"));
        var task2 = Task.Run(() => PrintValue("cnblogs"));
        Task.WaitAll(task1, task2);

        PrintValue("JeffckyWang from cnblogs");
   
        Console.WriteLine(string.Format("运行次数为:{0}", _runCount));
        Console.ReadKey();
    }
    public static void PrintValue(string valueToPrint)
    {
        var valueFound = _dictionary.GetOrAdd("key",
            x =>
            {
                Interlocked.Increment(ref _runCount);
                return valueToPrint;
            });
        Console.WriteLine(valueFound);
    }
}

运行结果

 

我截图了下GetOrAdd的源码,问题出现在红框部位。多线程同时运行的情况下,这个判断都会为true,因为同时都拿不到值,然后2个线程就同时进行新增,最后就导致可能出现的结果不一致。

 

对于这个问题,其实windows团队也是知道的,目前已开源的 Microsoft.AspNetCore.Mvc.Core ,我们可以查看中间件管道源代码如下:

 

/// <summary>
/// Builds a middleware pipeline after receiving the pipeline from a pipeline provider
/// </summary>
public class MiddlewareFilterBuilder
{
     // 'GetOrAdd' call on the dictionary is not thread safe and we might end up creating the pipeline more
     // once. To prevent this Lazy<> is used. In the worst case multiple Lazy<> objects are created for multiple
     // threads but only one of the objects succeeds in creating a pipeline.
     private readonly ConcurrentDictionary<Type, Lazy<RequestDelegate>> _pipelinesCache
         = new ConcurrentDictionary<Type, Lazy<RequestDelegate>>();
     private readonly MiddlewareFilterConfigurationProvider _configurationProvider;
     public IApplicationBuilder ApplicationBuilder { get; set; }
}

通过ConcurrentDictionary类调用上述方法无法保证委托调用的次数,在对于mvc中间管道只能初始化一次所以ASP.NET Core团队使用Lazy<>来初始化,此时我们将上述也进行上述对应的修改,如下:

class Program
{
    private static readonly ConcurrentDictionary<string, Lazy<string>> _lazyDictionary
        = new ConcurrentDictionary<string, Lazy<string>>();

    private static int _runCount = 0;
    public static void Main(string[] args)
    {
        var task1 = Task.Run(() => PrintValue("JeffckWang"));
        var task2 = Task.Run(() => PrintValue("cnblogs"));
        Task.WaitAll(task1, task2);

        PrintValue("JeffckyWang from cnblogs");
        Console.WriteLine(_runCount);
        Console.ReadKey();
    }
    public static void PrintValue(string valueToPrint)
    {
        var valueFound = _lazyDictionary.GetOrAdd("key",
            x => new Lazy<string>(
                () =>
                {
                    Interlocked.Increment(ref _runCount);
                    return valueToPrint;
                }));
        Console.WriteLine(valueFound.Value);
    }
}

运行结果如下

 

我们将第二个参数修改为Lazy<string>,最终调用valueFound.value将调用次数输出到控制台上。此时我们再来解释上述整个过程发生了什么。

(1)线程1调用GetOrAdd方法时,此键不存在,此时会调用valueFactory这个委托。

(2)线程2也调用GetOrAdd方法,此时线程1还未完成,此时也会调用valueFactory这个委托。

(3)线程1完成调用,返回一个未初始化的Lazy<string>对象,此时在Lazy<string>对象上的委托还未进行调用,此时检查未存在键key的值,于是将Lazy<striing>插入到字典中,并返回给调用者。

(4)线程2也完成调用,此时返回一个未初始化的Lazy<string>对象,在此之前检查到已存在键key的值通过线程1被保存到了字典中,所以会中断创建(因为方法的updateIfExists为false),于是其值会被线程1中的值所代替并返回给调用者。

(5)线程1调用Lazy<string>.Value,委托的调用以线程安全的方式运行,所以如果被两个线程同时调用则只运行一次。

(6)线程2调用Lazy<string>.Value,此时相同的Lazy<string>刚被线程1初始化过,此时则不会再进行第二次委托调用,如果线程1的委托初始化还未完成,此时线程2将被阻塞,直到完成为止,线程2才进行调用。(也就是Lazy写法强制使相同的委托同一时间只能执行一个,不知道我这个理解对不对)

(7)线程3调用GetOrAdd方法,此时已存在键key则不再调用委托,直接返回键key保存的结果给调用者。

上述使用Lazy来强迫我们运行委托只运行一次,如果调用委托比较耗时此时不利用Lazy来实现那么将调用多次,结果可想而知,现在我们只需要运行一次,虽然二者结果是一样的。我们通过调用Lazy<string>.Value来促使委托以线程安全的方式运行,从而保证在某一个时刻只有一个线程在运行,其他调用Lazy<string>.Value将会被阻塞直到第一个调用执行完,其余的线程将使用相同的结果。

问题是解决了,但是内部原理是什么呢?

我们接下来看看Lazy对象。方便演示我们定义一个博客类

public class Blog
{
    public string BlogName { get; set; }

    public Blog()
    {
        Console.WriteLine("博客构造函数被调用");
        BlogName = "JeffckyWang";
    }
}

接下来在控制台进行调用:

var blog = new Lazy<Blog>();
Console.WriteLine("博客对象被定义");
if (!blog.IsValueCreated) Console.WriteLine("博客对象还未被初始化");
Console.WriteLine("博客名称为:" + (blog.Value as Blog).BlogName);
if (blog.IsValueCreated) 
    Console.WriteLine("博客对象现在已经被初始化完毕");

打印如下:

 

通过上述打印我们知道当调用blog.Value时,此时博客对象才被创建并返回对象中的属性字段的值,上述布尔属性即IsValueCreated显示表明Lazy对象是否已经被初始化,上述初始化对象过程可以简述如下:

var lazyBlog = new Lazy<Blog>
(
    () =>
    {
        var blogObj = new Blog() { BlogName = "JeffckyWang" };
        return blogObj;
    }
);

打印结果和上述一致。上述运行都是在非线程安全的模式下进行,要是在多线程环境下对象只被创建一次我们需要用到如下构造函数:

public Lazy(LazyThreadSafetyMode mode);
public Lazy(Func<T> valueFactory, LazyThreadSafetyMode mode);

通过指定LazyThreadSafetyMode的枚举值来进行。

(1)None = 0【线程不安全】

(2)PublicationOnly = 1【针对于多线程,有多个线程运行初始化方法时,当第一个线程完成时其值则会设置到其他线程】

(3)ExecutionAndPublication = 2【针对单线程,加锁机制,每个初始化方法执行完毕,其值则相应的输出】

默认的模式为 LazyThreadSafetyMode.ExecutionAndPublication【针对单线程,加锁机制,每个初始化方法执行完毕,其值则相应的输出】保证委托只执行一次。为了不破坏原生调用ConcurrentDictionary的GetOrAdd方法,但是又为了保证线程安全,我们封装一个方法来方便进行调用。

封装线程安全方法

public class LazyConcurrentDictionary<TKey, TValue>
{
    private readonly ConcurrentDictionary<TKey, Lazy<TValue>> concurrentDictionary;

    public LazyConcurrentDictionary()
    {
        this.concurrentDictionary = new ConcurrentDictionary<TKey, Lazy<TValue>>();
    }

    public TValue GetOrAdd(TKey key, Func<TKey, TValue> valueFactory)
    {
        var lazyResult = this.concurrentDictionary.GetOrAdd(key, k => new Lazy<TValue>(() => valueFactory(k), LazyThreadSafetyMode.ExecutionAndPublication));
        return lazyResult.Value;
    }
}

原封不动的进行方法调用:

private static int _runCount = 0;
private static readonly LazyConcurrentDictionary<string, string> _lazyDictionary
      = new LazyConcurrentDictionary<string, string>();

public static void Main(string[] args)
{

    var task1 = Task.Run(() => PrintValue("JeffckyWang"));
    var task2 = Task.Run(() => PrintValue("cnblogs"));
    Task.WaitAll(task1, task2);

    PrintValue("JeffckyWang from cnblogs");
    Console.WriteLine(string.Format("运行次数为:{0}", _runCount));
    Console.Read();
}

public static void PrintValue(string valueToPrint)
{
    var valueFound = _lazyDictionary.GetOrAdd("key",
         x => {
                 Interlocked.Increment(ref _runCount);
                 Thread.Sleep(100);
                 return valueToPrint;
             });
    Console.WriteLine(valueFound);
}

最终正确打印只运行一次的结果,如下:

 

 

posted @ 2019-02-04 16:48  SeedQi  阅读(1534)  评论(0编辑  收藏  举报