FPGA Prototyping By Verilog Examples第五章 状态机FSM设计
上升沿检测电路之Moore型FSM
// Listing 5.3
module edge_detect_moore
(
input wire clk, reset,
input wire level,
output reg tick
);
// symbolic state declaration
localparam [1:0]
zero = 2'b00,
edg = 2'b01,
one = 2'b10;
// signal declaration
reg [1:0] state_reg, state_next;
// state register
always @(posedge clk, posedge reset)
if (reset)
state_reg <= zero;
else
state_reg <= state_next;
// next-state logic and output logic
always @*
begin
state_next = state_reg; // default state: the same
tick = 1'b0; // default output: 0
case (state_reg)
zero:
if (level)
state_next = edg;
edg:
begin
tick = 1'b1;
if (level)
state_next = one;
else
state_next = zero;
end
one:
if (~level)
state_next = zero;
default: state_next = zero;
endcase
end
endmodule
上升沿检测电路之Mealy型FSM
// Listing 5.4
module edge_detect_mealy
(
input wire clk, reset,
input wire level,
output reg tick
);
// symbolic state declaration
localparam zero = 1'b0,
one = 1'b1;
// signal declaration
reg state_reg, state_next;
// state register
always @(posedge clk, posedge reset)
if (reset)
state_reg <= zero;
else
state_reg <= state_next;
// next-state logic and output logic
always @*
begin
state_next = state_reg; // default state: the same
tick = 1'b0; // default output: 0
case (state_reg)
zero:
if (level)
begin
tick = 1'b1;
state_next = one;
end
one:
if (~level)
state_next = zero;
default: state_next = zero;
endcase
end
endmodule
上升沿检测电路之基本门电路设计
// Listing 5.5
module edge_detect_gate
(
input wire clk, reset,
input wire level,
output wire tick
);
// signal declaration
reg delay_reg;
// delay register
always @(posedge clk, posedge reset)
if (reset)
delay_reg <= 1'b0;
else
delay_reg <= level;
// decoding logic
assign tick = ~delay_reg & level;
endmodule
按键消抖电路FSM
// Listing 5.6
module db_fsm
(
input wire clk, reset,
input wire sw,
output reg db
);
// symbolic state declaration
localparam [2:0]
zero = 3'b000,
wait1_1 = 3'b001,
wait1_2 = 3'b010,
wait1_3 = 3'b011,
one = 3'b100,
wait0_1 = 3'b101,
wait0_2 = 3'b110,
wait0_3 = 3'b111;
// number of counter bits (2^N * 20ns = 10ms tick)
localparam N =19;
// signal declaration
reg [N-1:0] q_reg;
wire [N-1:0] q_next;
wire m_tick;
reg [2:0] state_reg, state_next;
// body
//=============================================
// counter to generate 10 ms tick
//=============================================
always @(posedge clk)
q_reg <= q_next;
// next-state logic
assign q_next = q_reg + 1;
// output tick
assign m_tick = (q_reg==0) ? 1'b1 : 1'b0;
//=============================================
// debouncing FSM
//=============================================
// state register
always @(posedge clk, posedge reset)
if (reset)
state_reg <= zero;
else
state_reg <= state_next;
// next-state logic and output logic
always @*
begin
state_next = state_reg; // default state: the same
db = 1'b0; // default output: 0
case (state_reg)
zero:
if (sw)
state_next = wait1_1;
wait1_1:
if (~sw)
state_next = zero;
else
if (m_tick)
state_next = wait1_2;
wait1_2:
if (~sw)
state_next = zero;
else
if (m_tick)
state_next = wait1_3;
wait1_3:
if (~sw)
state_next = zero;
else
if (m_tick)
state_next = one;
one:
begin
db = 1'b1;
if (~sw)
state_next = wait0_1;
end
wait0_1:
begin
db = 1'b1;
if (sw)
state_next = one;
else
if (m_tick)
state_next = wait0_2;
end
wait0_2:
begin
db = 1'b1;
if (sw)
state_next = one;
else
if (m_tick)
state_next = wait0_3;
end
wait0_3:
begin
db = 1'b1;
if (sw)
state_next = one;
else
if (m_tick)
state_next = zero;
end
default: state_next = zero;
endcase
end
endmodule
路漫漫其修远兮,吾将上下而求索