HADOOP MAPREDUCE(10):OutputFormat数据输出

1 OutputFormat接口实现类

 

 

2 自定义OutputFormat

 

 

3 自定义OutputFormat案例实操

1需求

过滤输入的log日志,包含atguigu的网站输出到e:/atguigu.log,不包含atguigu的网站输出到e:/other.log。

1)输入数据

2)期望输出数据

 

2.需求分析

 

 

 

3.案例实操

(1)编写FilterMapper

 

package com.atguigu.mapreduce.outputformat;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class FilterMapper extends Mapper<LongWritable, Text, Text, NullWritable>{
    
    @Override
    protected void map(LongWritable key, Text value, Context context)    throws IOException, InterruptedException {

        // 写出
        context.write(value, NullWritable.get());
    }
}
View Code

 

(2)编写FilterReducer

 

package com.atguigu.mapreduce.outputformat;
import java.io.IOException;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FilterReducer extends Reducer<Text, NullWritable, Text, NullWritable> {

Text k = new Text();

    @Override
    protected void reduce(Text key, Iterable<NullWritable> values, Context context)        throws IOException, InterruptedException {

       // 1 获取一行
        String line = key.toString();

       // 2 拼接
        line = line + "\r\n";

       // 3 设置key
       k.set(line);

       // 4 输出
        context.write(k, NullWritable.get());
    }
}

 

(3)自定义一个OutputFormat类

package com.atguigu.mapreduce.outputformat;
import java.io.IOException;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FilterOutputFormat extends FileOutputFormat<Text, NullWritable>{

    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job)            throws IOException, InterruptedException {

        // 创建一个RecordWriter
        return new FilterRecordWriter(job);
    }
}

(4)编写RecordWriter

 

package com.atguigu.mapreduce.outputformat;
import java.io.IOException;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

public class FilterRecordWriter extends RecordWriter<Text, NullWritable> {

    FSDataOutputStream atguiguOut = null;
    FSDataOutputStream otherOut = null;

    public FilterRecordWriter(TaskAttemptContext job) {

        // 1 获取文件系统
        FileSystem fs;

        try {
            fs = FileSystem.get(job.getConfiguration());

            // 2 创建输出文件路径
            Path atguiguPath = new Path("e:/atguigu.log");
            Path otherPath = new Path("e:/other.log");

            // 3 创建输出流
            atguiguOut = fs.create(atguiguPath);
            otherOut = fs.create(otherPath);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void write(Text key, NullWritable value) throws IOException, InterruptedException {

        // 判断是否包含“atguigu”输出到不同文件
        if (key.toString().contains("atguigu")) {
            atguiguOut.write(key.toString().getBytes());
        } else {
            otherOut.write(key.toString().getBytes());
        }
    }

    @Override
    public void close(TaskAttemptContext context) throws IOException, InterruptedException {

        // 关闭资源
IOUtils.closeStream(atguiguOut);
        IOUtils.closeStream(otherOut);    }
}
View Code

 

5)编写FilterDriver

 

package com.atguigu.mapreduce.outputformat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FilterDriver {

    public static void main(String[] args) throws Exception {

// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
args = new String[] { "e:/input/inputoutputformat", "e:/output2" };

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        job.setJarByClass(FilterDriver.class);
        job.setMapperClass(FilterMapper.class);
        job.setReducerClass(FilterReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);
        
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 要将自定义的输出格式组件设置到job中
        job.setOutputFormatClass(FilterOutputFormat.class);

        FileInputFormat.setInputPaths(job, new Path(args[0]));

        // 虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat
        // 而fileoutputformat要输出一个_SUCCESS文件,所以,在这还得指定一个输出目录
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

 

posted @ 2020-07-19 20:27  秋华  阅读(267)  评论(0编辑  收藏  举报