李航统计学习方法(第二版)(二):感知机模型介绍

https://www.zhihu.com/question/26526858

1 简介

        感知机(perceptron)是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和一1二值。感知机对应于输入空间(特征空间)中将实例划
分为正负两类的分离超平面,属于判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入1于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形式。感知机预测是用学习得到的感知机模型对新的输入实例进行分类。

2 模型

输入空间

输入变量

输出空间

输出变量

 

 假设空间

 

 

 

 3 学习策略

损失函数

 

 

 

 

 4 算法

 普通原始形式

 

 

 

 

 

  对偶形式

 

 

 

 

 

 

 

 

 算法收敛性

 

 

 

 

 

 

 

 

 

posted @ 2020-04-16 21:11  秋华  阅读(245)  评论(0编辑  收藏  举报