数据可视化基础专题(六):Pandas基础(五) DQL 索引和数据选择器(查找)

1.序言

如何切片,切块,以及通常获取和设置pandas对象的子集

2.索引的不同选择

对象选择已经有许多用户请求的添加,以支持更明确的基于位置的索引。Pandas现在支持三种类型的多轴索引。

  • .loc主要是基于标签的,但也可以与布尔数组一起使用。当找不到物品时.loc会提高KeyError。允许的输入是:

    • 单个标签,例如5'a'(注意,它5被解释为索引的 标签。此用法不是索引的整数位置。)。
    • 列表或标签数组。['a', 'b', 'c']
    • 带标签的切片对象'a':'f'(注意,相反普通的Python片,都开始和停止都包括在内,当存在于索引中!见有标签切片 和端点都包括在内。)
    • 布尔数组
    • 一个callable带有一个参数的函数(调用Series或DataFrame)并返回有效的索引输出(上面的一个)。

    版本0.18.1中的新功能。

    标签选择中查看更多信息。

  • .iloc是基于主要的整数位置(从0到 length-1所述轴的),但也可以用布尔阵列使用。 如果请求的索引器超出范围,.iloc则会引发IndexError,但允许越界索引的切片索引器除外。(这符合Python / NumPy 切片 语义)。允许的输入是:

    • 一个整数,例如5
    • 整数列表或数组。[4, 3, 0]
    • 带有整数的切片对象1:7
    • 布尔数组。
    • 一个callable带有一个参数的函数(调用Series或DataFrame)并返回有效的索引输出(上面的一个)。

    版本0.18.1中的新功能。

    有关详细信息,请参阅按位置选择高级索引高级层次结构

  • .loc.iloc以及[]索引也可以接受一个callable索引器。在Select By Callable中查看更多信息。

从具有多轴选择的对象获取值使用以下表示法(使用.loc作为示例,但以下也适用.iloc)。任何轴访问器可以是空切片:。假设超出规范的轴是:,例如p.loc['a']相当于 。p.loc['a', :, :]

对象类型索引
系列 s.loc[indexer]
数据帧 df.loc[row_indexer,column_indexer]

3基础知识

正如在上一节中介绍数据结构时所提到的,索引的主要功能[](也就是__getitem__ 那些熟悉在Python中实现类行为的人)是选择低维切片。下表显示了使用以下方法索引pandas对象时的返回类型值[]

对象类型选择返回值类型
系列 series[label] 标量值
数据帧 frame[colname] Series 对应于colname

我们构建一个简单的时间序列数据集,用于说明索引功能:

In [1]: dates = pd.date_range('1/1/2000', periods=8)

In [2]: df = pd.DataFrame(np.random.randn(8, 4),
   ...:                   index=dates, columns=['A', 'B', 'C', 'D'])
   ...: 

In [3]: df
Out[3]: 
                   A         B         C         D
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804
2000-01-04  0.721555 -0.706771 -1.039575  0.271860
2000-01-05 -0.424972  0.567020  0.276232 -1.087401
2000-01-06 -0.673690  0.113648 -1.478427  0.524988
2000-01-07  0.404705  0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312  0.844885

除非特别说明,否则索引功能都不是时间序列特定的。

因此,如上所述,我们使用最基本的索引[]

In [4]: s = df['A']

In [5]: s[dates[5]]
Out[5]: -0.6736897080883706

您可以传递列表列表[]以按该顺序选择列。如果DataFrame中未包含列,则会引发异常。也可以这种方式设置多列:

In [6]: df
Out[6]: 
                   A         B         C         D
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804
2000-01-04  0.721555 -0.706771 -1.039575  0.271860
2000-01-05 -0.424972  0.567020  0.276232 -1.087401
2000-01-06 -0.673690  0.113648 -1.478427  0.524988
2000-01-07  0.404705  0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312  0.844885

In [7]: df[['B', 'A']] = df[['A', 'B']]

In [8]: df
Out[8]: 
                   A         B         C         D
2000-01-01 -0.282863  0.469112 -1.509059 -1.135632
2000-01-02 -0.173215  1.212112  0.119209 -1.044236
2000-01-03 -2.104569 -0.861849 -0.494929  1.071804
2000-01-04 -0.706771  0.721555 -1.039575  0.271860
2000-01-05  0.567020 -0.424972  0.276232 -1.087401
2000-01-06  0.113648 -0.673690 -1.478427  0.524988
2000-01-07  0.577046  0.404705 -1.715002 -1.039268
2000-01-08 -1.157892 -0.370647 -1.344312  0.844885

您可能会发现这对于将变换(就地)应用于列的子集非常有用。

3.1 属性访问

您可以直接访问某个Series或列上的索引DataFrame作为属性:

In [14]: sa = pd.Series([1, 2, 3], index=list('abc'))

In [15]: dfa = df.copy()
In [16]: sa.b
Out[16]: 2

In [17]: dfa.A
Out[17]: 
2000-01-01    0.469112
2000-01-02    1.212112
2000-01-03   -0.861849
2000-01-04    0.721555
2000-01-05   -0.424972
2000-01-06   -0.673690
2000-01-07    0.404705
2000-01-08   -0.370647
Freq: D, Name: A, dtype: float64
In [18]: sa.a = 5

In [19]: sa
Out[19]: 
a    5
b    2
c    3
dtype: int64

In [20]: dfa.A = list(range(len(dfa.index)))  # ok if A already exists

In [21]: dfa
Out[21]: 
            A         B         C         D
2000-01-01  0 -0.282863 -1.509059 -1.135632
2000-01-02  1 -0.173215  0.119209 -1.044236
2000-01-03  2 -2.104569 -0.494929  1.071804
2000-01-04  3 -0.706771 -1.039575  0.271860
2000-01-05  4  0.567020  0.276232 -1.087401
2000-01-06  5  0.113648 -1.478427  0.524988
2000-01-07  6  0.577046 -1.715002 -1.039268
2000-01-08  7 -1.157892 -1.344312  0.844885

In [22]: dfa['A'] = list(range(len(dfa.index)))  # use this form to create a new column

In [23]: dfa
Out[23]: 
            A         B         C         D
2000-01-01  0 -0.282863 -1.509059 -1.135632
2000-01-02  1 -0.173215  0.119209 -1.044236
2000-01-03  2 -2.104569 -0.494929  1.071804
2000-01-04  3 -0.706771 -1.039575  0.271860
2000-01-05  4  0.567020  0.276232 -1.087401
2000-01-06  5  0.113648 -1.478427  0.524988
2000-01-07  6  0.577046 -1.715002 -1.039268
2000-01-08  7 -1.157892 -1.344312  0.844885

如果您使用的是IPython环境,则还可以使用tab-completion来查看这些可访问的属性。

您还可以将a分配dict给一行DataFrame

In [24]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})

In [25]: x.iloc[1] = {'x': 9, 'y': 99}

In [26]: x
Out[26]: 
   x   y
0  1   3
1  9  99
2  3   5

您可以使用属性访问来修改DataFrame的Series或列的现有元素,但要小心; 如果您尝试使用属性访问权来创建新列,则会创建新属性而不是新列。在0.21.0及更高版本中,这将引发UserWarning

In [1]: df = pd.DataFrame({'one': [1., 2., 3.]})
In [2]: df.two = [4, 5, 6]
UserWarning: Pandas doesn't allow Series to be assigned into nonexistent columns - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute_access
In [3]: df
Out[3]:
   one
0  1.0
1  2.0
2  3.0

3.2 切片范围

沿着任意轴切割范围的最稳健和一致的方法在详细说明该方法的“ 按位置选择部分中描述.iloc。现在,我们解释使用[]运算符切片的语义。

使用Series,语法与ndarray完全一样,返回值的一部分和相应的标签:

In [27]: s[:5]
Out[27]: 
2000-01-01    0.469112
2000-01-02    1.212112
2000-01-03   -0.861849
2000-01-04    0.721555
2000-01-05   -0.424972
Freq: D, Name: A, dtype: float64

In [28]: s[::2]
Out[28]: 
2000-01-01    0.469112
2000-01-03   -0.861849
2000-01-05   -0.424972
2000-01-07    0.404705
Freq: 2D, Name: A, dtype: float64

In [29]: s[::-1]
Out[29]: 
2000-01-08   -0.370647
2000-01-07    0.404705
2000-01-06   -0.673690
2000-01-05   -0.424972
2000-01-04    0.721555
2000-01-03   -0.861849
2000-01-02    1.212112
2000-01-01    0.469112
Freq: -1D, Name: A, dtype: float64

请注意,设置也适用:

In [30]: s2 = s.copy()

In [31]: s2[:5] = 0

In [32]: s2
Out[32]: 
2000-01-01    0.000000
2000-01-02    0.000000
2000-01-03    0.000000
2000-01-04    0.000000
2000-01-05    0.000000
2000-01-06   -0.673690
2000-01-07    0.404705
2000-01-08   -0.370647
Freq: D, Name: A, dtype: float64

使用DataFrame,切片内部[] 切片。这主要是为了方便而提供的,因为它是如此常见的操作。

In [33]: df[:3]
Out[33]: 
                   A         B         C         D
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [34]: df[::-1]
Out[34]: 
                   A         B         C         D
2000-01-08 -0.370647 -1.157892 -1.344312  0.844885
2000-01-07  0.404705  0.577046 -1.715002 -1.039268
2000-01-06 -0.673690  0.113648 -1.478427  0.524988
2000-01-05 -0.424972  0.567020  0.276232 -1.087401
2000-01-04  0.721555 -0.706771 -1.039575  0.271860
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632

3.3 按标签选择 .loc

pandas提供了一套方法,以便拥有纯 粹基于标签的索引。这是一个严格的包含协议。要求的每个标签必须在索引中,否则KeyError将被提出。切片时,如果索引中存在,则包括起始绑定和停止边界。整数是有效标签,但它们是指标签而不是位置。******

.loc属性是主要访问方法。以下是有效输入:

  • 单个标签,例如5'a'(注意,它5被解释为索引的标签。此用法不是索引的整数位置。)。
  • 列表或标签数组。['a', 'b', 'c']
  • 带有标签的切片对象'a':'f'(注意,与通常的python切片相反,包括起始和停止,当存在于索引中时!请参见切片标签
  • 布尔数组。
  • callable,参见按可调用选择
In [38]: s1 = pd.Series(np.random.randn(6), index=list('abcdef'))

In [39]: s1
Out[39]: 
a    1.431256
b    1.340309
c   -1.170299
d   -0.226169
e    0.410835
f    0.813850
dtype: float64

In [40]: s1.loc['c':]
Out[40]: 
c   -1.170299
d   -0.226169
e    0.410835
f    0.813850
dtype: float64

In [41]: s1.loc['b']
Out[41]: 1.3403088497993827

请注意,设置也适用:

In [42]: s1.loc['c':] = 0

In [43]: s1
Out[43]: 
a    1.431256
b    1.340309
c    0.000000
d    0.000000
e    0.000000
f    0.000000
dtype: float64

使用DataFrame:

In [44]: df1 = pd.DataFrame(np.random.randn(6, 4),
   ....:                    index=list('abcdef'),
   ....:                    columns=list('ABCD'))
   ....: 

In [45]: df1
Out[45]: 
          A         B         C         D
a  0.132003 -0.827317 -0.076467 -1.187678
b  1.130127 -1.436737 -1.413681  1.607920
c  1.024180  0.569605  0.875906 -2.211372
d  0.974466 -2.006747 -0.410001 -0.078638
e  0.545952 -1.219217 -1.226825  0.769804
f -1.281247 -0.727707 -0.121306 -0.097883

In [46]: df1.loc[['a', 'b', 'd'], :]
Out[46]: 
          A         B         C         D
a  0.132003 -0.827317 -0.076467 -1.187678
b  1.130127 -1.436737 -1.413681  1.607920
d  0.974466 -2.006747 -0.410001 -0.078638

通过标签切片访问:

In [47]: df1.loc['d':, 'A':'C']
Out[47]: 
          A         B         C
d  0.974466 -2.006747 -0.410001
e  0.545952 -1.219217 -1.226825
f -1.281247 -0.727707 -0.121306

使用标签获取横截面(相当于df.xs('a')):

In [48]: df1.loc['a']
Out[48]: 
A    0.132003
B   -0.827317
C   -0.076467
D   -1.187678
Name: a, dtype: float64

要使用布尔数组获取值:

In [49]: df1.loc['a'] > 0
Out[49]: 
A     True
B    False
C    False
D    False
Name: a, dtype: bool

In [50]: df1.loc[:, df1.loc['a'] > 0]
Out[50]: 
          A
a  0.132003
b  1.130127
c  1.024180
d  0.974466
e  0.545952
f -1.281247

要明确获取值(相当于已弃用df.get_value('a','A')):

# this is also equivalent to ``df1.at['a','A']``
In [51]: df1.loc['a', 'A']
Out[51]: 0.13200317033032932

用标签切片

使用.loc切片时,如果索引中存在开始和停止标签,则返回位于两者之间的元素(包括它们):

In [52]: s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4])

In [53]: s.loc[3:5]
Out[53]: 
3    b
2    c
5    d
dtype: object

如果两个中至少有一个不存在,但索引已排序,并且可以与开始和停止标签进行比较,那么通过选择在两者之间排名的标签,切片仍将按预期工作:

In [54]: s.sort_index()
Out[54]: 
0    a
2    c
3    b
4    e
5    d
dtype: object

In [55]: s.sort_index().loc[1:6]
Out[55]: 
2    c
3    b
4    e
5    d
dtype: object

然而,如果两个中的至少一个不存在并且索引未被排序,则将引发错误(因为否则将是计算上昂贵的,并且对于混合类型索引可能是模糊的)。例如,在上面的例子中,s.loc[1:6]会提高KeyError

3.4 按位置选择 .iloc

Pandas提供了一套方法,以获得纯粹基于整数的索引。语义紧跟Python和NumPy切片。这些是0-based索引。切片时,所结合的开始被包括,而上限是排除。尝试使用非整数,甚至是有效的标签都会引发一个问题IndexError

.iloc属性是主要访问方法。以下是有效输入:

  • 一个整数,例如5
  • 整数列表或数组。[4, 3, 0]
  • 带有整数的切片对象1:7
  • 布尔数组。
In [56]: s1 = pd.Series(np.random.randn(5), index=list(range(0, 10, 2)))

In [57]: s1
Out[57]: 
0    0.695775
2    0.341734
4    0.959726
6   -1.110336
8   -0.619976
dtype: float64

In [58]: s1.iloc[:3]
Out[58]: 
0    0.695775
2    0.341734
4    0.959726
dtype: float64

In [59]: s1.iloc[3]
Out[59]: -1.110336102891167

请注意,设置也适用:

In [60]: s1.iloc[:3] = 0

In [61]: s1
Out[61]: 
0    0.000000
2    0.000000
4    0.000000
6   -1.110336
8   -0.619976
dtype: float64

使用DataFrame:

In [62]: df1 = pd.DataFrame(np.random.randn(6, 4),
   ....:                    index=list(range(0, 12, 2)),
   ....:                    columns=list(range(0, 8, 2)))
   ....: 

In [63]: df1
Out[63]: 
           0         2         4         6
0   0.149748 -0.732339  0.687738  0.176444
2   0.403310 -0.154951  0.301624 -2.179861
4  -1.369849 -0.954208  1.462696 -1.743161
6  -0.826591 -0.345352  1.314232  0.690579
8   0.995761  2.396780  0.014871  3.357427
10 -0.317441 -1.236269  0.896171 -0.487602

 通过整数切片选择:

In [64]: df1.iloc[:3]
Out[64]: 
          0         2         4         6
0  0.149748 -0.732339  0.687738  0.176444
2  0.403310 -0.154951  0.301624 -2.179861
4 -1.369849 -0.954208  1.462696 -1.743161

In [65]: df1.iloc[1:5, 2:4]
Out[65]: 
          4         6
2  0.301624 -2.179861
4  1.462696 -1.743161
6  1.314232  0.690579
8  0.014871  3.357427

通过整数列表选择:

In [66]: df1.iloc[[1, 3, 5], [1, 3]]
Out[66]: 
           2         6
2  -0.154951 -2.179861
6  -0.345352  0.690579
10 -1.236269 -0.487602
In [67]: df1.iloc[1:3, :]
Out[67]: 
          0         2         4         6
2  0.403310 -0.154951  0.301624 -2.179861
4 -1.369849 -0.954208  1.462696 -1.743161
In [68]: df1.iloc[:, 1:3]
Out[68]: 
           2         4
0  -0.732339  0.687738
2  -0.154951  0.301624
4  -0.954208  1.462696
6  -0.345352  1.314232
8   2.396780  0.014871
10 -1.236269  0.896171
# this is also equivalent to ``df1.iat[1,1]``
In [69]: df1.iloc[1, 1]
Out[69]: -0.1549507744249032

使用整数位置(等效df.xs(1))得到横截面:

In [70]: df1.iloc[1]
Out[70]: 
0    0.403310
2   -0.154951
4    0.301624
6   -2.179861
Name: 2, dtype: float64

超出范围的切片索引正如Python / Numpy中一样优雅地处理。

# these are allowed in python/numpy.
In [71]: x = list('abcdef')

In [72]: x
Out[72]: ['a', 'b', 'c', 'd', 'e', 'f']

In [73]: x[4:10]
Out[73]: ['e', 'f']

In [74]: x[8:10]
Out[74]: []

In [75]: s = pd.Series(x)

In [76]: s
Out[76]: 
0    a
1    b
2    c
3    d
4    e
5    f
dtype: object

In [77]: s.iloc[4:10]
Out[77]: 
4    e
5    f
dtype: object

In [78]: s.iloc[8:10]
Out[78]: Series([], dtype: object)

请注意,使用超出边界的切片可能会导致空轴(例如,返回一个空的DataFrame)。

In [79]: dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))

In [80]: dfl
Out[80]: 
          A         B
0 -0.082240 -2.182937
1  0.380396  0.084844
2  0.432390  1.519970
3 -0.493662  0.600178
4  0.274230  0.132885

In [81]: dfl.iloc[:, 2:3]
Out[81]: 
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [82]: dfl.iloc[:, 1:3]
Out[82]: 
          B
0 -2.182937
1  0.084844
2  1.519970
3  0.600178
4  0.132885

In [83]: dfl.iloc[4:6]
Out[83]: 
         A         B
4  0.27423  0.132885

一个超出范围的索引器会引发一个IndexError。任何元素超出范围的索引器列表都会引发 IndexError

>>> dfl.iloc[[4, 5, 6]]
IndexError: positional indexers are out-of-bounds

>>> dfl.iloc[:, 4]
IndexError: single positional indexer is out-of-bounds

3.5 通过可调用选择

.loc.iloc以及[]索引也可以接受一个callable索引器。在callable必须与一个参数(调用系列或数据帧)返回的有效输出索引功能。

In [84]: df1 = pd.DataFrame(np.random.randn(6, 4),
   ....:                    index=list('abcdef'),
   ....:                    columns=list('ABCD'))
   ....: 

In [85]: df1
Out[85]: 
          A         B         C         D
a -0.023688  2.410179  1.450520  0.206053
b -0.251905 -2.213588  1.063327  1.266143
c  0.299368 -0.863838  0.408204 -1.048089
d -0.025747 -0.988387  0.094055  1.262731
e  1.289997  0.082423 -0.055758  0.536580
f -0.489682  0.369374 -0.034571 -2.484478

In [86]: df1.loc[lambda df: df.A > 0, :]
Out[86]: 
          A         B         C         D
c  0.299368 -0.863838  0.408204 -1.048089
e  1.289997  0.082423 -0.055758  0.536580

In [87]: df1.loc[:, lambda df: ['A', 'B']]
Out[87]: 
          A         B
a -0.023688  2.410179
b -0.251905 -2.213588
c  0.299368 -0.863838
d -0.025747 -0.988387
e  1.289997  0.082423
f -0.489682  0.369374

In [88]: df1.iloc[:, lambda df: [0, 1]]
Out[88]: 
          A         B
a -0.023688  2.410179
b -0.251905 -2.213588
c  0.299368 -0.863838
d -0.025747 -0.988387
e  1.289997  0.082423
f -0.489682  0.369374

In [89]: df1[lambda df: df.columns[0]]
Out[89]: 
a   -0.023688
b   -0.251905
c    0.299368
d   -0.025747
e    1.289997
f   -0.489682
Name: A, dtype: float64

您可以使用可调用索引Series

In [90]: df1.A.loc[lambda s: s > 0]
Out[90]: 
c    0.299368
e    1.289997
Name: A, dtype: float64

使用这些方法/索引器,您可以在不使用临时变量的情况下链接数据选择操作。

In [91]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [92]: (bb.groupby(['year', 'team']).sum()
   ....:    .loc[lambda df: df.r > 100])
   ....: 
Out[92]: 
           stint    g    ab    r    h  X2b  X3b  hr    rbi    sb   cs   bb     so   ibb   hbp    sh    sf  gidp
year team                                                                                                      
2007 CIN       6  379   745  101  203   35    2  36  125.0  10.0  1.0  105  127.0  14.0   1.0   1.0  15.0  18.0
     DET       5  301  1062  162  283   54    4  37  144.0  24.0  7.0   97  176.0   3.0  10.0   4.0   8.0  28.0
     HOU       4  311   926  109  218   47    6  14   77.0  10.0  4.0   60  212.0   3.0   9.0  16.0   6.0  17.0
     LAN      11  413  1021  153  293   61    3  36  154.0   7.0  5.0  114  141.0   8.0   9.0   3.0   8.0  29.0
     NYN      13  622  1854  240  509  101    3  61  243.0  22.0  4.0  174  310.0  24.0  23.0  18.0  15.0  48.0
     SFN       5  482  1305  198  337   67    6  40  171.0  26.0  7.0  235  188.0  51.0   8.0  16.0   6.0  41.0
     TEX       2  198   729  115  200   40    4  28  115.0  21.0  4.0   73  140.0   4.0   5.0   2.0   8.0  16.0
     TOR       4  459  1408  187  378   96    2  58  223.0   4.0  2.0  190  265.0  16.0  12.0   4.0  16.0  38.0

3.6 快速标量值获取和设置 at iat

因为索引[]必须处理很多情况(单标签访问 ,切片,布尔索引等),所以它有一些开销以便弄清楚你要求的是什么。如果您只想访问标量值,最快的方法是使用在所有数据结构上实现的atiat方法。

与之类似locat提供基于标签的标量查找,同时iat提供类似于基于整数的查找iloc

In [136]: s.iat[5]
Out[136]: 5

In [137]: df.at[dates[5], 'A']
Out[137]: -0.6736897080883706

In [138]: df.iat[3, 0]
Out[138]: 0.7215551622443669

您也可以使用这些相同的索引器进行设置。

In [139]: df.at[dates[5], 'E'] = 7

In [140]: df.iat[3, 0] = 7

at 如果索引器丢失,可以如上所述放大对象

In [141]: df.at[dates[-1] + pd.Timedelta('1 day'), 0] = 7

In [142]: df
Out[142]: 
                   A         B         C         D    E    0
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632  NaN  NaN
2000-01-02  1.212112 -0.173215  0.119209 -1.044236  NaN  NaN
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804  NaN  NaN
2000-01-04  7.000000 -0.706771 -1.039575  0.271860  NaN  NaN
2000-01-05 -0.424972  0.567020  0.276232 -1.087401  NaN  NaN
2000-01-06 -0.673690  0.113648 -1.478427  0.524988  7.0  NaN
2000-01-07  0.404705  0.577046 -1.715002 -1.039268  NaN  NaN
2000-01-08 -0.370647 -1.157892 -1.344312  0.844885  NaN  NaN
2000-01-09       NaN       NaN       NaN       NaN  NaN  7.0

4 布尔索引

另一种常见操作是使用布尔向量来过滤数据。运营商是:|for or&for and~for not。必须使用括号对这些进行分组,因为默认情况下,Python将评估表达式,例如as ,而期望的评估顺序是 。df.A > 2 & df.B < 3````df.A > (2 & df.B) < 3````(df.A > 2) & (df.B < 3)

使用布尔向量索引系列的工作方式与NumPy ndarray完全相同

In [143]: s = pd.Series(range(-3, 4))

In [144]: s
Out[144]: 
0   -3
1   -2
2   -1
3    0
4    1
5    2
6    3
dtype: int64

In [145]: s[s > 0]
Out[145]: 
4    1
5    2
6    3
dtype: int64

In [146]: s[(s < -1) | (s > 0.5)]
Out[146]: 
0   -3
1   -2
4    1
5    2
6    3
dtype: int64

In [147]: s[~(s < 0)]
Out[147]: 
3    0
4    1
5    2
6    3
dtype: int64

您可以使用与DataFrame索引长度相同的布尔向量从DataFrame中选择行(例如,从DataFrame的其中一列派生的东西):

In [148]: df[df['A'] > 0]
Out[148]: 
                   A         B         C         D   E   0
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
2000-01-02  1.212112 -0.173215  0.119209 -1.044236 NaN NaN
2000-01-04  7.000000 -0.706771 -1.039575  0.271860 NaN NaN
2000-01-07  0.404705  0.577046 -1.715002 -1.039268 NaN NaN

列表推导和map系列方法也可用于产生更复杂的标准:

In [149]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
   .....:                     'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
   .....:                     'c': np.random.randn(7)})
   .....: 

# only want 'two' or 'three'
In [150]: criterion = df2['a'].map(lambda x: x.startswith('t'))

In [151]: df2[criterion]
Out[151]: 
       a  b         c
2    two  y  0.041290
3  three  x  0.361719
4    two  y -0.238075

# equivalent but slower
In [152]: df2[[x.startswith('t') for x in df2['a']]]
Out[152]: 
       a  b         c
2    two  y  0.041290
3  three  x  0.361719
4    two  y -0.238075

# Multiple criteria
In [153]: df2[criterion & (df2['b'] == 'x')]
Out[153]: 
       a  b         c
3  three  x  0.361719

随着选择方法通过标签选择,通过位置选择和高级索引,你可以沿着使用布尔向量与其他索引表达式中组合选择多个轴。

In [154]: df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']
Out[154]: 
   b         c
3  x  0.361719

4.2 使用isin进行索引

考虑一下isin()方法Series,该方法返回一个布尔向量,只要Series元素存在于传递列表中,该向量就为真。这允许您选择一列或多列具有所需值的行:

In [155]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')

In [156]: s
Out[156]: 
4    0
3    1
2    2
1    3
0    4
dtype: int64

In [157]: s.isin([2, 4, 6])
Out[157]: 
4    False
3    False
2     True
1    False
0     True
dtype: bool

In [158]: s[s.isin([2, 4, 6])]
Out[158]: 
2    2
0    4
dtype: int64

Index对象可以使用相同的方法,当您不知道哪些搜索标签实际存在时,它们非常有用:

In [159]: s[s.index.isin([2, 4, 6])]
Out[159]: 
4    0
2    2
dtype: int64

# compare it to the following
In [160]: s.reindex([2, 4, 6])
Out[160]: 
2    2.0
4    0.0
6    NaN
dtype: float64

除此之外,还MultiIndex允许选择在成员资格检查中使用的单独级别:

In [161]: s_mi = pd.Series(np.arange(6),
   .....:                  index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))
   .....: 

In [162]: s_mi
Out[162]: 
0  a    0
   b    1
   c    2
1  a    3
   b    4
   c    5
dtype: int64

In [163]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]
Out[163]: 
0  c    2
1  a    3
dtype: int64

In [164]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
Out[164]: 
0  a    0
   c    2
1  a    3
   c    5
dtype: int64

DataFrame也有一个isin()方法。调用时isin,将一组值作为数组或字典传递。如果values是一个数组,则isin返回与原始DataFrame形状相同的布尔数据框,并在元素序列中的任何位置使用True。

In [165]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
   .....:                    'ids2': ['a', 'n', 'c', 'n']})
   .....: 

In [166]: values = ['a', 'b', 1, 3]

In [167]: df.isin(values)
Out[167]: 
    vals    ids   ids2
0   True   True   True
1  False   True  False
2   True  False  False
3  False  False  False

通常,您需要将某些值与某些列匹配。只需将值设置dict为键为列的位置,值即为要检查的项目列表。

In [168]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}

In [169]: df.isin(values)
Out[169]: 
    vals    ids   ids2
0   True   True  False
1  False   True  False
2   True  False  False
3  False  False  False

结合数据帧的isinany()all()方法来快速选择符合给定的标准对数据子集。要选择每列符合其自己标准的行:

In [170]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}

In [171]: row_mask = df.isin(values).all(1)

In [172]: df[row_mask]
Out[172]: 
   vals ids ids2
0     1   a    a

4.3 where()方法和屏蔽

从具有布尔向量的Series中选择值通常会返回数据的子集。为了保证选择输出与原始数据具有相同的形状,您可以whereSeries和中使用该方法DataFrame

仅返回选定的行:

In [173]: s[s > 0]
Out[173]: 
3    1
2    2
1    3
0    4
dtype: int64

要返回与原始形状相同的系列:

In [174]: s.where(s > 0)
Out[174]: 
4    NaN
3    1.0
2    2.0
1    3.0
0    4.0
dtype: float64

现在,使用布尔标准从DataFrame中选择值也可以保留输入数据形状。where在引擎盖下用作实现。下面的代码相当于。df.where(df < 0)

In [175]: df[df < 0]
Out[175]: 
                   A         B         C         D
2000-01-01 -2.104139 -1.309525       NaN       NaN
2000-01-02 -0.352480       NaN -1.192319       NaN
2000-01-03 -0.864883       NaN -0.227870       NaN
2000-01-04       NaN -1.222082       NaN -1.233203
2000-01-05       NaN -0.605656 -1.169184       NaN
2000-01-06       NaN -0.948458       NaN -0.684718
2000-01-07 -2.670153 -0.114722       NaN -0.048048
2000-01-08       NaN       NaN -0.048788 -0.808838

此外,在返回的副本中,where使用可选other参数替换条件为False的值。

In [176]: df.where(df < 0, -df)
Out[176]: 
                   A         B         C         D
2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824
2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059
2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203
2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416
2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718
2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048
2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838

您可能希望根据某些布尔条件设置值。这可以直观地完成,如下所示:

In [177]: s2 = s.copy()

In [178]: s2[s2 < 0] = 0

In [179]: s2
Out[179]: 
4    0
3    1
2    2
1    3
0    4
dtype: int64

In [180]: df2 = df.copy()

In [181]: df2[df2 < 0] = 0

In [182]: df2
Out[182]: 
                   A         B         C         D
2000-01-01  0.000000  0.000000  0.485855  0.245166
2000-01-02  0.000000  0.390389  0.000000  1.655824
2000-01-03  0.000000  0.299674  0.000000  0.281059
2000-01-04  0.846958  0.000000  0.600705  0.000000
2000-01-05  0.669692  0.000000  0.000000  0.342416
2000-01-06  0.868584  0.000000  2.297780  0.000000
2000-01-07  0.000000  0.000000  0.168904  0.000000
2000-01-08  0.801196  1.392071  0.000000  0.000000

默认情况下,where返回数据的修改副本。有一个可选参数,inplace以便可以在不创建副本的情况下修改原始数据:

In [183]: df_orig = df.copy()

In [184]: df_orig.where(df > 0, -df, inplace=True)

In [185]: df_orig
Out[185]: 
                   A         B         C         D
2000-01-01  2.104139  1.309525  0.485855  0.245166
2000-01-02  0.352480  0.390389  1.192319  1.655824
2000-01-03  0.864883  0.299674  0.227870  0.281059
2000-01-04  0.846958  1.222082  0.600705  1.233203
2000-01-05  0.669692  0.605656  1.169184  0.342416
2000-01-06  0.868584  0.948458  2.297780  0.684718
2000-01-07  2.670153  0.114722  0.168904  0.048048
2000-01-08  0.801196  1.392071  0.048788  0.808838

5 重复数据

如果要识别和删除DataFrame中的重复行,有两种方法可以提供帮助:duplicateddrop_duplicates。每个都将用于标识重复行的列作为参数。

  • duplicated 返回一个布尔向量,其长度为行数,表示行是否重复。
  • drop_duplicates 删除重复的行。

默认情况下,重复集的第一个观察行被认为是唯一的,但每个方法都有一个keep参数来指定要保留的目标。

  • keep='first' (默认值):标记/删除重复项,第一次出现除外。
  • keep='last':标记/删除重复项,除了最后一次出现。
  • keep=False:标记/删除所有重复项。
In [264]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'],
   .....:                     'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],
   .....:                     'c': np.random.randn(7)})
   .....: 

In [265]: df2
Out[265]: 
       a  b         c
0    one  x -1.067137
1    one  y  0.309500
2    two  x -0.211056
3    two  y -1.842023
4    two  x -0.390820
5  three  x -1.964475
6   four  x  1.298329

In [266]: df2.duplicated('a')
Out[266]: 
0    False
1     True
2    False
3     True
4     True
5    False
6    False
dtype: bool

In [267]: df2.duplicated('a', keep='last')
Out[267]: 
0     True
1    False
2     True
3     True
4    False
5    False
6    False
dtype: bool

In [268]: df2.duplicated('a', keep=False)
Out[268]: 
0     True
1     True
2     True
3     True
4     True
5    False
6    False
dtype: bool

In [269]: df2.drop_duplicates('a')
Out[269]: 
       a  b         c
0    one  x -1.067137
2    two  x -0.211056
5  three  x -1.964475
6   four  x  1.298329

In [270]: df2.drop_duplicates('a', keep='last')
Out[270]: 
       a  b         c
1    one  y  0.309500
4    two  x -0.390820
5  three  x -1.964475
6   four  x  1.298329

In [271]: df2.drop_duplicates('a', keep=False)
Out[271]: 
       a  b         c
5  three  x -1.964475
6   four  x  1.298329

此外,您可以传递列表列表以识别重复。

In [272]: df2.duplicated(['a', 'b'])
Out[272]: 
0    False
1    False
2    False
3    False
4     True
5    False
6    False
dtype: bool

In [273]: df2.drop_duplicates(['a', 'b'])
Out[273]: 
       a  b         c
0    one  x -1.067137
1    one  y  0.309500
2    two  x -0.211056
3    two  y -1.842023
5  three  x -1.964475
6   four  x  1.298329

要按索引值删除重复项,请使用Index.duplicated然后执行切片。keep参数可以使用相同的选项集。

In [274]: df3 = pd.DataFrame({'a': np.arange(6),
   .....:                     'b': np.random.randn(6)},
   .....:                    index=['a', 'a', 'b', 'c', 'b', 'a'])
   .....: 

In [275]: df3
Out[275]: 
   a         b
a  0  1.440455
a  1  2.456086
b  2  1.038402
c  3 -0.894409
b  4  0.683536
a  5  3.082764

In [276]: df3.index.duplicated()
Out[276]: array([False,  True, False, False,  True,  True])

In [277]: df3[~df3.index.duplicated()]
Out[277]: 
   a         b
a  0  1.440455
b  2  1.038402
c  3 -0.894409

In [278]: df3[~df3.index.duplicated(keep='last')]
Out[278]: 
   a         b
c  3 -0.894409
b  4  0.683536
a  5  3.082764

In [279]: df3[~df3.index.duplicated(keep=False)]
Out[279]: 
   a         b
c  3 -0.894409

6 索引对象

pandas Index类及其子类可以视为实现有序的多集合。允许重复。但是,如果您尝试将Index具有重复条目的对象转换为a set,则会引发异常。

Index还提供了查找,数据对齐和重建索引所需的基础结构。Index直接创建的最简单方法 是将一个list或其他序列传递给 Index

In [285]: index = pd.Index(['e', 'd', 'a', 'b'])

In [286]: index
Out[286]: Index(['e', 'd', 'a', 'b'], dtype='object')

In [287]: 'd' in index
Out[287]: True

您还可以传递一个name存储在索引中:

In [288]: index = pd.Index(['e', 'd', 'a', 'b'], name='something')

In [289]: index.name
Out[289]: 'something'

名称(如果已设置)将显示在控制台显示中:

In [290]: index = pd.Index(list(range(5)), name='rows')

In [291]: columns = pd.Index(['A', 'B', 'C'], name='cols')

In [292]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)

In [293]: df
Out[293]: 
cols         A         B         C
rows                              
0     1.295989  0.185778  0.436259
1     0.678101  0.311369 -0.528378
2    -0.674808 -1.103529 -0.656157
3     1.889957  2.076651 -1.102192
4    -1.211795 -0.791746  0.634724

In [294]: df['A']
Out[294]: 
rows
0    1.295989
1    0.678101
2   -0.674808
3    1.889957
4   -1.211795
Name: A, dtype: float64

 

6.1 设置元数据

索引是“不可改变的大多是”,但它可以设置和改变它们的元数据,如指数name(或为MultiIndexlevels和 codes)。

您可以使用renameset_namesset_levels,和set_codes 直接设置这些属性。他们默认返回一份副本; 但是,您可以指定inplace=True使数据更改到位。

In [295]: ind = pd.Index([1, 2, 3])

In [296]: ind.rename("apple")
Out[296]: Int64Index([1, 2, 3], dtype='int64', name='apple')

In [297]: ind
Out[297]: Int64Index([1, 2, 3], dtype='int64')

In [298]: ind.set_names(["apple"], inplace=True)

In [299]: ind.name = "bob"

In [300]: ind
Out[300]: Int64Index([1, 2, 3], dtype='int64', name='bob')

set_namesset_levels并且set_codes还采用可选 level参数

In [301]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])

In [302]: index
Out[302]: 
MultiIndex([(0, 'one'),
            (0, 'two'),
            (1, 'one'),
            (1, 'two'),
            (2, 'one'),
            (2, 'two')],
           names=['first', 'second'])

In [303]: index.levels[1]
Out[303]: Index(['one', 'two'], dtype='object', name='second')

In [304]: index.set_levels(["a", "b"], level=1)
Out[304]: 
MultiIndex([(0, 'a'),
            (0, 'b'),
            (1, 'a'),
            (1, 'b'),
            (2, 'a'),
            (2, 'b')],
           names=['first', 'second'])

6.2 在Index对象上设置操作

两个主要业务是和。这些可以直接称为实例方法,也可以通过重载运算符使用。通过该方法提供差异。union (|)````intersection (&)````.difference()

In [305]: a = pd.Index(['c', 'b', 'a'])

In [306]: b = pd.Index(['c', 'e', 'd'])

In [307]: a | b
Out[307]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [308]: a & b
Out[308]: Index(['c'], dtype='object')

In [309]: a.difference(b)
Out[309]: Index(['a', 'b'], dtype='object')

同时还提供了操作,它返回出现在任一元件或,但不是在两者。这相当于创建的索引,删除了重复项。symmetric_difference (^)````idx1````idx2````idx1.difference(idx2).union(idx2.difference(idx1))

In [310]: idx1 = pd.Index([1, 2, 3, 4])

In [311]: idx2 = pd.Index([2, 3, 4, 5])

In [312]: idx1.symmetric_difference(idx2)
Out[312]: Int64Index([1, 5], dtype='int64')

In [313]: idx1 ^ idx2
Out[313]: Int64Index([1, 5], dtype='int64')

Index.union()具有不同dtypes的索引之间执行时,必须将索引强制转换为公共dtype。通常,虽然并非总是如此,但这是对象dtype。例外是在整数和浮点数据之间执行联合。在这种情况下,整数值将转换为float

In [314]: idx1 = pd.Index([0, 1, 2])

In [315]: idx2 = pd.Index([0.5, 1.5])

In [316]: idx1 | idx2
Out[316]: Float64Index([0.0, 0.5, 1.0, 1.5, 2.0], dtype='float64')

6.3 缺少值

即使Index可以保存缺失值(NaN),但如果您不想要任何意外结果,也应该避免使用。例如,某些操作会隐式排除缺失值。

Index.fillna 使用指定的标量值填充缺失值。

In [317]: idx1 = pd.Index([1, np.nan, 3, 4])

In [318]: idx1
Out[318]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64')

In [319]: idx1.fillna(2)
Out[319]: Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64')

In [320]: idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'),
   .....:                          pd.NaT,
   .....:                          pd.Timestamp('2011-01-03')])
   .....: 

In [321]: idx2
Out[321]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None)

In [322]: idx2.fillna(pd.Timestamp('2011-01-02'))
Out[322]: DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None)

6.4 设置/重置索引

有时您会将数据集加载或创建到DataFrame中,并希望在您已经完成之后添加索引。有几种不同的方式

6.4.1 设置索引

DataFrame有一个set_index()方法,它采用列名(对于常规Index)或列名列表(对于a MultiIndex)。要创建新的重新索引的DataFrame:

In [323]: data
Out[323]: 
     a    b  c    d
0  bar  one  z  1.0
1  bar  two  y  2.0
2  foo  one  x  3.0
3  foo  two  w  4.0

In [324]: indexed1 = data.set_index('c')

In [325]: indexed1
Out[325]: 
     a    b    d
c               
z  bar  one  1.0
y  bar  two  2.0
x  foo  one  3.0
w  foo  two  4.0

In [326]: indexed2 = data.set_index(['a', 'b'])

In [327]: indexed2
Out[327]: 
         c    d
a   b          
bar one  z  1.0
    two  y  2.0
foo one  x  3.0
    two  w  4.0

append关键字选项让你保持现有索引并追加给列一个多指标:

In [328]: frame = data.set_index('c', drop=False)

In [329]: frame = frame.set_index(['a', 'b'], append=True)

In [330]: frame
Out[330]: 
           c    d
c a   b          
z bar one  z  1.0
y bar two  y  2.0
x foo one  x  3.0
w foo two  w  4.0

其他选项set_index允许您不删除索引列或就地添加索引(不创建新对象):

In [331]: data.set_index('c', drop=False)
Out[331]: 
     a    b  c    d
c                  
z  bar  one  z  1.0
y  bar  two  y  2.0
x  foo  one  x  3.0
w  foo  two  w  4.0

In [332]: data.set_index(['a', 'b'], inplace=True)

In [333]: data
Out[333]: 
         c    d
a   b          
bar one  z  1.0
    two  y  2.0
foo one  x  3.0
    two  w  4.0

6.4.2 重置索引

为方便起见,DataFrame上有一个新函数,它将 reset_index()索引值传输到DataFrame的列中并设置一个简单的整数索引。这是反向操作set_index()

In [334]: data
Out[334]: 
         c    d
a   b          
bar one  z  1.0
    two  y  2.0
foo one  x  3.0
    two  w  4.0

In [335]: data.reset_index()
Out[335]: 
     a    b  c    d
0  bar  one  z  1.0
1  bar  two  y  2.0
2  foo  one  x  3.0
3  foo  two  w  4.0

输出更类似于SQL表或记录数组。从索引派生的列的名称是存储在names属性中的名称。

您可以使用level关键字仅删除索引的一部分:

In [336]: frame
Out[336]: 
           c    d
c a   b          
z bar one  z  1.0
y bar two  y  2.0
x foo one  x  3.0
w foo two  w  4.0

In [337]: frame.reset_index(level=1)
Out[337]: 
         a  c    d
c b               
z one  bar  z  1.0
y two  bar  y  2.0
x one  foo  x  3.0
w two  foo  w  4.0

reset_index采用一个可选参数drop,如果为true,则只丢弃索引,而不是将索引值放在DataFrame的列中

6.4.3添加ad hoc索引

如果您自己创建索引,则可以将其分配给index字段

data.index = index

 

posted @ 2020-04-09 17:07  秋华  阅读(755)  评论(0编辑  收藏  举报