摘要:
变换器(Transformers)通常与分类器,回归器或其他的学习器组合在一起以构建复合估计器。 完成这件事的最常用工具是 Pipeline。 Pipeline 经常与 FeatureUnion 结合起来使用。 FeatureUnion 用于将变换器(transformers)的输出串联到复合特征空 阅读全文
posted @ 2021-06-20 13:30
秋华
阅读(1529)
评论(0)
推荐(0)
摘要:
在训练完 scikit-learn 模型之后,最好有一种方法来将模型持久化以备将来使用,而无需重新训练。 以下部分为您提供了有关如何使用 pickle 来持久化模型的示例。 在使用 pickle 序列化时,我们还将回顾一些安全性和可维护性方面的问题。 pickle的另一种方法是使用相关项目中列出的模 阅读全文
posted @ 2021-06-20 13:06
秋华
阅读(1211)
评论(0)
推荐(0)
摘要:
超参数,即不直接在估计器内学习的参数。在 scikit-learn 包中,它们作为估计器类中构造函数的参数进行传递。典型的示例有:用于支持向量分类器的 C 、kernel 和 gamma ,用于Lasso的 alpha 等。 搜索超参数空间以便获得最好 交叉验证 分数的方法是可能的而且是值得提倡的。 阅读全文
posted @ 2021-06-20 13:00
秋华
阅读(565)
评论(0)
推荐(0)