行为识别TSM训练ucf101数据集

序言

最近有个行为检测的需求,打算用行为识别做,纯小白入这个方向,啃了两周的TSM原理和源码,训练好自己的数据集后,发现好像没法应用到自己的需求场景??玛德!算了,还是要记录一下。原理就没别要讲了,网上很多,感兴趣的可以自己去搜。

一、数据准备

首先把代码git下来temporal-shift-module,然后作者提供了一个mobilenetv2版本的手势识别在线demo,使用了tvm推理,在Jeston Nano能够达到实时,看着还不错的样子,赶紧试一下,可是我没有nano怎么办?没关系,修改一下。
在这里插入图片描述
该demo放在online_demo目录中的main.py文件,可是没有nano,又不想安装tvm怎么办?问题不大,修改一下,用pytorch推理!把改下的模型下载下来,README.md中有提供下载链接,推荐使用迅雷下载。在noline_demo下新建一个demo.py文件,将tvm的那部分推理换成pytorch的推理即可,基于main.py修改后的代码如下:

import torch
from online_demo.mobilenet_v2_tsm import MobileNetV2
import cv2
import numpy as np
import torchvision
from PIL import Image
import time

SOFTMAX_THRES = 1
HISTORY_LOGIT = True
REFINE_OUTPUT = True

shift_buffer = [torch.zeros([1, 3, 56, 56]),
                torch.zeros([1, 4, 28, 28]),
                torch.zeros([1, 4, 28, 28]),
                torch.zeros([1, 8, 14, 14]),
                torch.zeros([1, 8, 14, 14]),
                torch.zeros([1, 8, 14, 14]),
                torch.zeros([1, 12, 14, 14]),
                torch.zeros([1, 12, 14, 14]),
                torch.zeros([1, 20, 7, 7]),
                torch.zeros([1, 20, 7, 7])]


class GroupScale(object):
    """ Rescales the input PIL.Image to the given 'size'.
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        self.worker = torchvision.transforms.Scale(size, interpolation)

    def __call__(self, img_group):
        return [self.worker(img) for img in img_group]


class GroupCenterCrop(object):
    def __init__(self, size):
        self.worker = torchvision.transforms.CenterCrop(size)

    def __call__(self, img_group):
        return [self.worker(img) for img in img_group]


class Stack(object):

    def __init__(self, roll=False):
        self.roll = roll

    def __call__(self, img_group):
        if img_group[0].mode == 'L':
            return np.concatenate([np.expand_dims(x, 2) for x in img_group], axis=2)
        elif img_group[0].mode == 'RGB':
            if self.roll:
                return np.concatenate([np.array(x)[:, :, ::-1] for x in img_group], axis=2)
            else:
                return np.concatenate(img_group, axis=2)


class ToTorchFormatTensor(object):
    """ Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
    to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """

    def __init__(self, div=True):
        self.div = div

    def __call__(self, pic):
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
        else:
            # handle PIL Image
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
            img = img.view(pic.size[1], pic.size[0], len(pic.mode))
            # put it from HWC to CHW format
            # yikes, this transpose takes 80% of the loading time/CPU
            img = img.transpose(0, 1).transpose(0, 2).contiguous()
        return img.float().div(255) if self.div else img.float()


class GroupNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
        rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
        rep_std = self.std * (tensor.size()[0] // len(self.std))

        # TODO: make efficient
        for t, m, s in zip(tensor, rep_mean, rep_std):
            t.sub_(m).div_(s)

        return tensor

def get_transform():
    cropping = torchvision.transforms.Compose([
        GroupScale(256),
        GroupCenterCrop(224),
    ])
    transform = torchvision.transforms.Compose([
        cropping,
        Stack(roll=False),
        ToTorchFormatTensor(div=True),
        GroupNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    return transform


def transform(frame: np.ndarray):
    # 480, 640, 3, 0 ~ 255
    frame = cv2.resize(frame, (224, 224))  # (224, 224, 3) 0 ~ 255
    frame = frame / 255.0  # (224, 224, 3) 0 ~ 1.0
    frame = np.transpose(frame, axes=[2, 0, 1])  # (3, 224, 224) 0 ~ 1.0
    frame = np.expand_dims(frame, axis=0)  # (1, 3, 480, 640) 0 ~ 1.0
    return frame


def process_output(idx_, history):
    # idx_: the output of current frame
    # history: a list containing the history of predictions
    if not REFINE_OUTPUT:
        return idx_, history

    max_hist_len = 20  # max history buffer

    # mask out illegal action
    # 等于这些类时默认为2
    if idx_ in [7, 8, 21, 22, 3]:
        idx_ = history[-1]

    # use only single no action class
    # 做其他事情默认也为2
    if idx_ == 0:
        idx_ = 2

    # history smoothing
    if idx_ != history[-1]:
        if not (history[-1] == history[-2]):  # and history[-2] == history[-3]):
            idx_ = history[-1]

    history.append(idx_)
    history = history[-max_hist_len:]  

    return history[-1], history  # 返回本帧结果和历史结果

catigories = [
    "Doing other things",  # 0
    "Drumming Fingers",  # 1
    "No gesture",  # 2
    "Pulling Hand In",  # 3
    "Pulling Two Fingers In",  # 4
    "Pushing Hand Away",  # 5
    "Pushing Two Fingers Away",  # 6
    "Rolling Hand Backward",  # 7
    "Rolling Hand Forward",  # 8
    "Shaking Hand",  # 9
    "Sliding Two Fingers Down",  # 10
    "Sliding Two Fingers Left",  # 11
    "Sliding Two Fingers Right",  # 12
    "Sliding Two Fingers Up",  # 13
    "Stop Sign",  # 14
    "Swiping Down",  # 15
    "Swiping Left",  # 16
    "Swiping Right",  # 17
    "Swiping Up",  # 18
    "Thumb Down",  # 19
    "Thumb Up",  # 20
    "Turning Hand Clockwise",  # 21
    "Turning Hand Counterclockwise",  # 22
    "Zooming In With Full Hand",  # 23
    "Zooming In With Two Fingers",  # 24
    "Zooming Out With Full Hand",  # 25
    "Zooming Out With Two Fingers"  # 26
]


# catigories = [
#     "做其他事情",  # 0
#     "Drumming Fingers",  # 1
#     "没有手势",  # 2
#     "Pulling Hand In",  # 3
#     "把两根手指往里拉",  # 4
#     "手推掉",  # 5
#     "推开两根手指",  # 6
#     "向后滚动手",  # 7
#     "向前滚动手",  # 8
#     "颤抖的手",  # 9
#     "向下滑动两根手指",  # 10
#     "向左滑动两根手指",  # 11
#     "向右滑动两根手指",  # 12
#     "向上滑动两根手指",  # 13
#     "停止手势",  # 14
#     "刷下来",  # 15
#     "向左刷",  # 16
#     "向右刷",  # 17
#     "向上刷",  # 18
#     "拇指向下",  # 19
#     "拇指向上",  # 20
#     "顺时针",  # 21
#     "逆时针",  # 22
#     "全手放大",  # 23
#     "两根手指放大",  # 24
#     "全手缩小",  # 25
#     "Z两根手指缩小"  # 26
# ]

n_still_frame = 0

WINDOW_NAME = 'Video Gesture Recognition'

def main():

    torch_module = MobileNetV2(n_class=27)
    torch_module.load_state_dict(torch.load(r"H:\github\TSM\online_demo\mobilenetv2_jester_online.pth.tar"))   # 加载模型,路径自己修改

    torch_module.eval()

    print("Open camera...")
    cap = cv2.VideoCapture(0)  # 打开摄像头

    print(cap)

    # set a lower resolution for speed up   为加速设置一个较低的分辨率
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 240)

    # env variables  窗口变量
    full_screen = False
    cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
    cv2.resizeWindow(WINDOW_NAME, 640, 480)
    cv2.moveWindow(WINDOW_NAME, 0, 0)
    cv2.setWindowTitle(WINDOW_NAME, WINDOW_NAME)

    t = None
    index = 0
    print("Build transformer...")
    transform = get_transform()  # 预处理
    print("Build Executor...")

    idx = 0
    history = [2]
    history_logit = []
    history_timing = []

    i_frame = -1

    print("Ready!")
    while True:  # 读取摄像头
        i_frame += 1
        _, img = cap.read()  # (480, 640, 3) 0 ~ 255
        if i_frame % 2 == 0:  # skip every other frame to obtain a suitable frame rate , 隔帧抽取
            t1 = time.time()
            img_tran = transform([Image.fromarray(img).convert('RGB')])  # 图片预处理
            input_var = torch.autograd.Variable(img_tran.view(1, 3, img_tran.size(1), img_tran.size(2)))  # 张量转换
            with torch.no_grad():
                feat, *buffer = torch_module(input_var, *shift_buffer)

            if SOFTMAX_THRES > 0:
                feat_np = feat.numpy().reshape(-1)
                feat_np -= feat_np.max()
                softmax = np.exp(feat_np) / np.sum(np.exp(feat_np))

                print(max(softmax))
                if max(softmax) > SOFTMAX_THRES:
                    idx_ = np.argmax(feat.numpy(), axis=1)[0]
                else:
                    idx_ = idx
                print(idx_)
            else:
                idx_ = np.argmax(feat.numpy(), axis=1)[0]  # 得到结果值

            if HISTORY_LOGIT:  # 平均
                history_logit.append(feat.numpy())
                history_logit = history_logit[-12:]
                avg_logit = sum(history_logit)
                idx_ = np.argmax(avg_logit, axis=1)[0]

            idx, history = process_output(idx_, history)  # 本帧结果、历史帧结果(最大保留20帧)

            t2 = time.time()
            print(f"{index} {catigories[idx]}")

            current_time = t2 - t1  # 推理时间

        # 识别效果展示部分
        img = cv2.resize(img, (640, 480))
        img = img[:, ::-1]
        height, width, _ = img.shape
        label = np.zeros([height // 10, width, 3]).astype('uint8') + 255

        cv2.putText(label, 'Prediction: ' + catigories[idx],
                    (0, int(height / 16)),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.7, (0, 0, 0), 2)
        cv2.putText(label, '{:.1f} Vid/s'.format(1 / current_time),
                    (width - 170, int(height / 16)),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.7, (0, 0, 0), 2)

        img = np.concatenate((img, label), axis=0)
        cv2.imshow(WINDOW_NAME, img)

        key = cv2.waitKey(1)
        if key & 0xFF == ord('q') or key == 27:  # exit
            break
        elif key == ord('F') or key == ord('f'):  # full screen
            print('Changing full screen option!')
            full_screen = not full_screen
            if full_screen:
                print('Setting FS!!!')
                cv2.setWindowProperty(WINDOW_NAME, cv2.WND_PROP_FULLSCREEN,
                                      cv2.WINDOW_FULLSCREEN)
            else:
                cv2.setWindowProperty(WINDOW_NAME, cv2.WND_PROP_FULLSCREEN,
                                      cv2.WINDOW_NORMAL)

        if t is None:
            t = time.time()
        else:
            nt = time.time()
            index += 1
            t = nt

    cap.release()
    cv2.destroyAllWindows()


main()

在这里插入图片描述
个人隐私打个码,不得不吐槽的是,效果真的不太行。。。。我想说的是这个demo也太辣鸡了吧,虽然不知道作者是咋训练的,亦或是因为我pytorch推理的原因哪里没设置好,如果有按照教程用tvm推理测试的带佬,效果可以评论区告知一下。好了,不纠结这个了,进入正题!

二、数据准备

我的数据是按照ucf101的格式准备的,如果手头上没有数据的同学,建议从ucf101中抽出10个类简单训练一下,没必要用全部的101个类,因为一会抽帧抽出来的图片实在是太多了!!全部的话得有150万+。

很头大的是,程序里面没有提供ucf101格式的数据准备脚本!!可是我踏马没有接触过行为识别啊,完全不知道数据该怎么准备!!靠!硬着头皮翻了很多不同模型的行为识别模型的代码,慢慢的整理,终于整出来了,妈卖批。首先看下ucf101下下来后的文件结构:
在这里插入图片描述
其实就是101的文件夹,每个文件夹里面有每个动作的短视频。类似于
在这里插入图片描述
这是数据文件,还需要标签文件,官方划分训练集和测试集的txt文件:
在这里插入图片描述
因为这里只提取了10个类,提取了前十个类的视频文件,并且修改label里面的标签,将后91个类别的标签信息去掉。在tools文件夹中新建一个文件夹,取名vid2img_ucf101.py,代码如下(需要安装ffmpeg,因为要用它来抽帧,这个自行百度就好,比较简单):

from __future__ import print_function, division
import os
import sys
import subprocess

def class_process(dir_path, dst_dir_path, class_name):
  class_path = os.path.join(dir_path, class_name)
  if not os.path.isdir(class_path):
    return

  dst_class_path = os.path.join(dst_dir_path, class_name)
  if not os.path.exists(dst_class_path):
    os.mkdir(dst_class_path)

  for file_name in os.listdir(class_path):
    if '.avi' not in file_name:
      continue
    name, ext = os.path.splitext(file_name)
    dst_directory_path = os.path.join(dst_class_path, name)

    video_file_path = os.path.join(class_path, file_name)
    try:
      if os.path.exists(dst_directory_path):
        if not os.path.exists(os.path.join(dst_directory_path, 'image_00001.jpg')):
          subprocess.call('rm -r \"{}\"'.format(dst_directory_path), shell=True)
          print('remove {}'.format(dst_directory_path))
          os.mkdir(dst_directory_path)
        else:
          continue
      else:
        os.mkdir(dst_directory_path)
    except:
      print(dst_directory_path)
      continue
    cmd = 'ffmpeg -i \"{}\" -vf scale=-1:480 \"{}/image_%05d.jpg\"'.format(video_file_path, dst_directory_path)
    print(cmd)
    subprocess.call(cmd, shell=True)
    print('\n')

if __name__=="__main__":
  dir_path = sys.argv[1]      # 视频文件总路径
  dst_dir_path = sys.argv[2]   # 抽帧后图片存放路径

  for class_name in os.listdir(dir_path):
    class_process(dir_path, dst_dir_path, class_name)

运行命令,如果没有报错的话,要等比较久:

python tools/vid2img_ucf101.py 视频路径 抽帧后图片存放路径

抽完后,再继续新建一个gen_label_ucf101.py文件,内容如下,一些路径自己修改,需要注意的是数据生成是在windows上,所以在linux的话.split(’\’)可能要修改一下:

import os
import glob
import fnmatch
import random

root = r"/ssd1/cai/TSM-action/UCF101/jpg/"      # 抽帧后的图片存放目录文件夹,用于写到txt文件中在构建数据集的时候读取

def parse_ucf_splits():
    class_ind = [x.strip().split() for x in open(r'G:\UCF101\label/classInd.txt')]       # 类别txt
    class_mapping = {x[1]:int(x[0])-1 for x in class_ind}

    def line2rec(line):
        items = line.strip().split('/')
        label = class_mapping[items[0]]
        vid = items[1].split('.')[0]
        return vid, label

    splits = []
    for i in range(1, 4):
        train_list = [line2rec(x) for x in open(r'G:\UCF101\label/trainlist{:02d}.txt'.format(i))]       # 训练集txt
        test_list = [line2rec(x) for x in open(r'G:\UCF101\label/testlist{:02d}.txt'.format(i))]          # 测试集txt
        splits.append((train_list, test_list))
    return splits

split_parsers = dict()
split_parsers['ucf101'] = parse_ucf_splits()

def parse_split_file(dataset):
    sp = split_parsers[dataset]
    return tuple(sp)

def parse_directory(path, rgb_prefix='image_', flow_x_prefix='flow_x_', flow_y_prefix='flow_y_'):
    """
    Parse directories holding extracted frames from standard benchmarks
    """
    print('parse frames under folder {}'.format(path))
    frame_folders = []
    frame = glob.glob(os.path.join(path, '*'))
    for frame_name in frame:
        frame_path = glob.glob(os.path.join(frame_name, '*'))
        frame_folders.extend(frame_path)

    def count_files(directory, prefix_list):
        lst = os.listdir(directory)
        cnt_list = [len(fnmatch.filter(lst, x+'*')) for x in prefix_list]
        return cnt_list

    # check RGB
    rgb_counts = {}
    flow_counts = {}
    dir_dict = {}
    for i,f in enumerate(frame_folders):
        all_cnt = count_files(f, (rgb_prefix, flow_x_prefix, flow_y_prefix))
        k = f.split('\\')[-1]
        rgb_counts[k] = all_cnt[0]
        dir_dict[k] = f

        x_cnt = all_cnt[1]
        y_cnt = all_cnt[2]
        if x_cnt != y_cnt:
            raise ValueError('x and y direction have different number of flow images. video: '+f)
        flow_counts[k] = x_cnt
        if i % 200 == 0:
            print('{} videos parsed'.format(i))

    print('frame folder analysis done')
    return dir_dict, rgb_counts, flow_counts

def build_split_list(split_tuple, frame_info, split_idx, shuffle=False):
    split = split_tuple[split_idx]

    def build_set_list(set_list):
        rgb_list, flow_list = list(), list()
        for item in set_list:
            frame_dir = frame_info[0][item[0]]
            frame_dir = root + frame_dir.split('\\')[-2] +'/'+ frame_dir.split('\\')[-1]

            rgb_cnt = frame_info[1][item[0]]
            flow_cnt = frame_info[2][item[0]]
            rgb_list.append('{} {} {}\n'.format(frame_dir, rgb_cnt, item[1]))
            flow_list.append('{} {} {}\n'.format(frame_dir, flow_cnt, item[1]))
        if shuffle:
            random.shuffle(rgb_list)
            random.shuffle(flow_list)
        return rgb_list, flow_list
    train_rgb_list, train_flow_list = build_set_list(split[0])
    test_rgb_list, test_flow_list = build_set_list(split[1])
    return (train_rgb_list, test_rgb_list), (train_flow_list, test_flow_list)

spl = parse_split_file('ucf101')
f_info = parse_directory(r"G:\UCF101\jpg")    # 存放抽帧后的图片

out_path = r"G:\UCF101\label"      # 标签路径
dataset = "ucf101"

for i in range(max(3,len(spl))):
    lists = build_split_list(spl,f_info,i)
    open(os.path.join(out_path, '{}_rgb_train_split_{}.txt'.format(dataset, i + 1)), 'w').writelines(lists[0][0])
    open(os.path.join(out_path, '{}_rgb_val_split_{}.txt'.format(dataset, i + 1)), 'w').writelines(lists[0][1])
    # open(os.path.join(out_path, '{}_flow_train_split_{}.txt'.format(dataset, i + 1)), 'w').writelines(lists[1][0])
    # open(os.path.join(out_path, '{}_flow_val_split_{}.txt'.format(dataset, i + 1)), 'w').writelines(lists[1][1])

最后得到六个txt文件如下,这里只用到了split_1.txt的即可,其他的可以删掉:
在这里插入图片描述
每个文件的格式如下,图片路径、帧数、类别:
在这里插入图片描述

三、配置修改

修改以下配置,在ops/dataset_config.py中修改为自己文件的路径:
在这里插入图片描述

其中ROOT_DATASET为图片的总路径,与train_split_1.txt衔接的完整的图片路径,需要自己修改。

配置完成后下载相应的预训练权重,运行训练命令:

python main.py ucf101 RGB --arch resnet --num_segment 8 --gd 20 --lr 0.001 --lr_steps 10 20 --epochs 25 --batch-size 16 -j 16 --dropout 0.8 --consensus_type=avg --eval-freq=1 --shift --shift_div=8 --shift_place=blockres --tune_from=pretrained/TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth

python main.py ucf101 RGB --arch mobilenetv2 --num_segment 8 --gd 20 --lr 0.001 --lr_steps 10 20 --epochs 25 --batch-size 16 -j 16 --dropout 0.8 --consensus_type=avg --eval-freq=1 --shift --shift_div=8 --shift_place=blockres --tune_from=pretrained/TSM_kinetics_RGB_mobilenetv2_shift8_blockres_avg_segment8_e100_dense.pth

看到如下界面的话,训练开始;
在这里插入图片描述

不过这里可能会遇到个问题,如果使用mobilenetv2的预训练权重加载不上,在main文件中,将这部分替换一下,大概在97行左右:

    if args.tune_from:
        print(("=> fine-tuning from '{}'".format(args.tune_from)))
        sd = torch.load(args.tune_from)
        sd = sd['state_dict']
        if args.arch == "mobilenetv2":
            model_dict = model.module.state_dict()
        else:
            model_dict = model.state_dict()
        replace_dict = []
        for k, v in sd.items():
            if k not in model_dict and k.replace('.net', '') in model_dict:
                print('=> Load after remove .net: ', k)
                replace_dict.append((k, k.replace('.net', '')))
        for k, v in model_dict.items():
            if k not in sd and k.replace('.net', '') in sd:
                print('=> Load after adding .net: ', k)
                replace_dict.append((k.replace('.net', ''), k))

        for k, k_new in replace_dict:
            sd[k_new] = sd.pop(k)
        keys1 = set(list(sd.keys()))
        keys2 = set(list(model_dict.keys()))

        set_diff = (keys1 - keys2) | (keys2 - keys1)

        print('#### Notice: keys that failed to load: {}'.format(set_diff))
        if args.dataset not in args.tune_from:  # new dataset
            print('=> New dataset, do not load fc weights')
            if args.arch == "mobilenetv2":
                sd = {k: v for k, v in sd.items() if k in model.state_dict().keys() and model.state_dict().keys()[k].numel() == v.numel}
            else:
                sd = {k: v for k, v in sd.items() if 'fc' not in k}

        if args.modality == 'Flow' and 'Flow' not in args.tune_from:
            sd = {k: v for k, v in sd.items() if 'conv1.weight' not in k}
        model_dict.update(sd)
        if args.arch == "mobilenetv2":
            model.module.load_state_dict(model_dict)
        else:
            model.load_state_dict(model_dict)

    if args.temporal_pool and not args.resume:
        make_temporal_pool(model.module.base_model, args.num_segments)

在这里插入图片描述

最后训练完了,精度还不错,百分之99点多,可是要怎么输入视频测试呢??这就是这个程序里面最操蛋的地方!!连个纯视频输入的demo都没有,又要自己写,不得不说这个代码看了我两周,写的太乱了,看的我脑阔疼,要放假了,下回再说。

posted @ 2021-02-08 17:13  编程我的一切  阅读(1667)  评论(0编辑  收藏  举报