5. Longest Palindromic Substring (DP)
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
思路:如果不用动态规划,在两个for循环的情况下,还得依次比较i,j间的每个字符,O(n3)。使用动态规划,O(n2)
char* longestPalindrome(char* s) { int n = strlen(s); int max = 1; int pStart = 0; bool flag[n][n]; for(int i = 0; i < n; i++){ flag[i][i] = true; for(int j = i+1; j < n; j++){ flag[i][j] = false; } } for(int j = 1; j < n; j++){ //when iterate j, we should already iterated j-1, 可以理解成j之前已排序好=>用插入排序的顺序遍历 for(int i = 0; i < j; i++){ if(s[i]==s[j]){ flag[i][j] = (j==i+1)?true:flag[i+1][j-1]; if(flag[i][j] && j-i+1 > max){ max = j-i+1; pStart = i; } } } } s[pStart+max]='\0'; return &s[pStart]; }
方法II:KMP+动态规划,时间复杂度在最好情况下达到O(n)
首先在字符串的每个字符间加上#号。For example: S = “abaaba”, T = “#a#b#a#a#b#a#”。这样所有的回文数都是奇数,以便通过i的对应位置i’获得p[i]
P[i]存储以i为中心的最长回文的长度。For example:
T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0
下面我们说明如何计算P[i]。
假设我们已经处理了C位置(中心位置),它的最长回文数是abcbabcba,L指向它左侧位置,R指向它右侧位置。
现在我们要处理i位置。
if P[ i' ] ≤ R – i,
then P[ i ] ← P[ i' ] 那是因为在L到R范围内,i'的左侧与i的右侧相同,i'的右侧与i的左侧相同,i'左侧与右侧相同 =>i左侧与右侧相同。
else P[ i ] ≥ P[ i' ]. (Which we have to expand past the right edge (R) to find P[ i ].
If the palindrome centered at i does expand past R, we update C to i, (the center of this new palindrome), and extend R to the new palindrome’s right edge.
char* preProcess(char* s) { int n = strlen(s); if (n == 0) return "^$"; char* ret = malloc(sizeof(char)*(n*2+4)); char* pRet = ret; *pRet++ = '^'; //开始符^ for (int i = 0; i < n; i++){ *pRet++ = '#'; *pRet++ = s[i]; } *pRet++ = '#'; *pRet = '$';//结束符$ return ret; } char* longestPalindrome(char* s) { char* T = preProcess(s); int n = strlen(T); int P[n]; int C = 0, R = 0; char* ret; for (int i = 1; i < n-1; i++) { int i_mirror = 2*C-i; // equals to i_mirror = C - (i-C) //if p[i_mirror] < R-i: set p[i] to p[i_mirror] if(R>i){ if(P[i_mirror] <= R-i){ P[i] = P[i_mirror]; } else P[i] = R-i; } else P[i] = 0; //else: Attempt to expand palindrome centered at i while (T[i + 1 + P[i]] == T[i - 1 - P[i]]) //因为有哨兵^$所以不用担心越界; +1, -1检查下一个元素是否相等,若相等,扩大p[i] P[i]++; //if the palindrome centered at i does expand past R if (i + P[i] > R) { C = i; R = i + P[i]; } } // Find the maximum element in P. int maxLen = 0; int centerIndex = 0; for (int i = 1; i < n-1; i++) { if (P[i] > maxLen) { maxLen = P[i]; centerIndex = i; } } ret = malloc(sizeof(char)*maxLen+1); strncpy(ret, s+(centerIndex - 1 - maxLen)/2, maxLen); ret[maxLen] = '\0'; return ret; }