120. Triangle(Array; DP)
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路:与119题类似,只是现在DP中存储的不是数组的值,而是到目前为止的minimum sum。赋值DP时为了避免改变上一行结果,也是得从右往左
class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { if(triangle.empty()) return 0; int minValue = INT_MAX; vector<int> dp(triangle.size()); dp[0]=triangle[0][0]; for(int i = 1; i < dp.size(); i++){ dp[i] = dp[i-1]+triangle[i][i]; for(int j = i-1; j > 0; j--){ dp[j] = min(dp[j-1],dp[j])+triangle[i][j]; } dp[0] += triangle[i][0]; } for(int i = 0; i < dp.size(); i++){ if(dp[i] < minValue){ minValue = dp[i]; } } return minValue; } };