44. Wildcard Matching (String; DP, Back-Track)

Implement wildcard pattern matching with support for '?' and '*'.

'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).不同于正则表达式中的*

*正则表达式的定义:

  • '.' Matches any single character.
  • '*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).

The function prototype should be:
bool isMatch(const char *s, const char *p)

Some examples:
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa", "*") → true
isMatch("aa", "a*") → true
isMatch("ab", "?*") → true
isMatch("aab", "c*a*b") → false

思路I:当遇到*,有把*跳过,和继续保留*两种option=>带回溯的递归。其实也可称之为贪心法,贪心法则是每次都使*匹配尽可能少的字符。

class Solution {
public:
    bool isMatch(string s, string p) {
        return backTracking(s,p,0,0);
    }
    
    bool backTracking(string s, string p, int sp, int pp){
        //end condition
        if(sp==s.length()){
            while(pp<p.length() &&p[pp]=='*' ){
                pp++;
            }
            if(pp == p.length()) return true;
            else return false;
        }
        if(pp==p.length()) return false;
        
        if(p[pp]=='*'){
            while(pp+1<p.length() && p[pp+1]=='*') pp++; //ignore the stars directly behind star
            if(backTracking(s,p,sp,pp+1)) return true; //* not repeats
            return backTracking(s,p,sp+1,pp); //* repeats
        }
        else if(s[sp]==p[pp] || p[pp]=='?') return backTracking(s,p,sp+1,pp+1);
        else return false;
    }
};

时间复杂度:二叉recursion的高度是2n  所以O(2n)

Result: Time Limit Exceeded

 

思路II:依然是带回溯的递归,只是记录下*号位置,和匹配的字符数,那么等到某次*不匹配时可直接回到该位置。

class Solution {
public:
    bool isMatch(string s, string p) {
        star = false;
        return recursiveCheck(s,p,0,0);
    }
    
    bool recursiveCheck(const string &s, const string &p, int sIndex, int pIndex){
        if(sIndex >= s.length()){
            while(p[pIndex] == '*' && pIndex < p.length()) pIndex++; //s has went to end, check if the rest of p are all *
            return (pIndex==p.length());
        }
        
        if(pIndex >= p.length()){
            return checkStar(s,p);
        }
        
        switch(p[pIndex]) //p: pattern,在p中才可能出现?, *
        { 
        case '?':
            return recursiveCheck(s, p, sIndex+1, pIndex+1);
            break;
        case '*': //如果当前为*, 那么可认为之前的字符都匹配上了,并且将p移动到 * 结束后的第一个字符
            star = true;  //p 每次指向的位置,要么是最开始,要么是 * 结束的第一个位置
            starIndex = pIndex;
            matchedIndex = sIndex-1;
            while(p[pIndex] == '*'&& pIndex < p.length()){pIndex++;} //忽略紧接在 *后面的* 
            if(pIndex==p.length()) return true;//最后一位是*
            return recursiveCheck(s,p,sIndex,pIndex); //*匹配0个字符
            break;
        default:
            if(s[sIndex] != p[pIndex]) return checkStar(s, p);
            else return recursiveCheck(s, p, sIndex+1, pIndex+1);
            break;
         }
    }
    
    bool checkStar(const string &s, const string &p){
        if(!star) return false;
        else {
            int pIndex = starIndex+1;
            int sIndex = ++matchedIndex; //回溯,*d多匹配一个字符
            return recursiveCheck(s, p, sIndex, pIndex);
        }
    }
private:
    int starIndex;
    int matchedIndex;
    bool star;
};

 Result: Approved.

思路III:使用dp。dp[i][j]表示从字符串到i位置,模式串到j位置是否匹配。

class Solution {
public:
    bool isMatch(string s, string p) {
        int sLen = s.length();
        int pLen = p.length();
        if(sLen == 0){
            int pp = 0;
            while(pp<p.length() &&p[pp]=='*' ){
                pp++;
            }
            if(pp == p.length()) return true;
            else return false;
        }
        if(pLen == 0) return false;
        
          
        int len = 0;
        for(int i = 0;i < pLen;i++)  
            if(p[i] != '*') len++;  
        if(len > sLen) return false; 
        
        
        bool dp[sLen][pLen];
        int i = 0, j = 0;
        for(;i<sLen;i++){
            for(;j<pLen;j++){
                dp[i][j]=false;
            }
        }
        
        if(p[0]=='*'){ //c;*?*
            for(i = 0;i < sLen; i++ ){
                dp[i][0] = true;
            }
        }
        
        //first line can appear one letter which is not star
        if (p[0]=='?' || s[0] == p[0]){ //first not-star-letter appears
            dp[0][0] = true;
            for(j = 1;(j < pLen && p[j]=='*'); j++ ){
                dp[0][j]=true;
            }
        } 
        else if(p[0]=='*'){ 
            for(j = 1;(j < pLen && p[j-1]=='*'); j++ ){
                if(p[j]=='?' || s[0] == p[j]){ //first not-star-letter appears
                    dp[0][j]=true;
                    j++;
                    for(;j<pLen && p[j]=='*'; j++){ //after first not star, there should be all star
                        dp[0][j]=true;
                    }
                    break;
                }
                else if(p[j]=='*'){
                    dp[0][j]=true;
                }
            }
        }
        
        for(i = 1; i < sLen; i++){
            for(j = 1; j < pLen; j++){
                if(p[j]=='*'){
                    dp[i][j] = dp[i-1][j] //* repeat 1 time
                    || dp[i][j-1]; //*repeat 0 times
                }
                else if(s[i]==p[j] || p[j]=='?'){
                    dp[i][j] = dp[i-1][j-1];
                }
            }
        }
        
        return dp[sLen-1][pLen-1];
    }
};

时间复杂度:O(n2)

思路IV: 思路III的初始状态求法太复杂=>Solution:定义一个fake head。dp[0][0]表示两个空字符串的匹配情况,dp[0][0]=true.

class Solution {
public:
    bool isMatch(string s, string p) {
        int sLen = s.length();
        int pLen = p.length();
        if(sLen == 0){
            int pp = 0;
            while(pp<p.length() &&p[pp]=='*' ){
                pp++;
            }
            if(pp == p.length()) return true;
            else return false;
        }
        if(pLen == 0) return false;
        
        vector<vector<bool>> dp(sLen+1, vector<bool>(pLen+1,0));
        //initial states
        int i = 0, j = 0;
        dp[0][0]=true;
        for(j = 1;(j <= pLen && p[j-1]=='*'); j++ ){
            dp[0][j]=true;
        }
        
        //state transfer
        for(i = 1; i <= sLen; i++){
            for(j = 1; j <= pLen; j++){
                if(p[j-1]=='*'){
                    dp[i][j] = dp[i-1][j] //* repeat 1 time
                    || dp[i][j-1]; //*repeat 0 times
                }
                else if(s[i-1]==p[j-1] || p[j-1]=='?'){
                    dp[i][j] = dp[i-1][j-1];
                }
            }
        }
        
        return dp[sLen][pLen];
    }
};

 思路V:节约空间,状态之和i-1有关,所以只要记录上一行状态就可以。可以用一维数组。

class Solution {
public:
    bool isMatch(string s, string p) {
        int sLen = s.length();
        int pLen = p.length();
        if(sLen == 0){
            int pp = 0;
            while(pp<p.length() &&p[pp]=='*' ){
                pp++;
            }
            if(pp == p.length()) return true;
            else return false;
        }
        if(pLen == 0) return false;
        
        vector<bool> lastDP(pLen+1, 0);
        vector<bool> currentDP(pLen+1, 0);
        vector<bool> tmp;
        //initial states
        int i = 0, j = 0;
        lastDP[0]=true;
        for(j = 1;(j <= pLen && p[j-1]=='*'); j++ ){
            lastDP[j]=true;
        }
        
        //state transfer
        for(i = 1; i <= sLen; i++){
            currentDP[0]=false;
            for(j = 1; j <= pLen; j++){
                if(p[j-1]=='*'){
                    currentDP[j] = lastDP[j] //* repeat 1 time
                    || currentDP[j-1]; //*repeat 0 times
                }
                else if(s[i-1]==p[j-1] || p[j-1]=='?'){
                    currentDP[j] = lastDP[j-1];
                }
                else{
                    currentDP[j] = false;
                }
            }
            tmp = currentDP;
            currentDP = lastDP;
            lastDP = tmp;
        }
        
        return lastDP[pLen];
    }
};

 

posted on 2015-10-05 19:07  joannae  阅读(163)  评论(0编辑  收藏  举报

导航