131. Palindrome Partitioning (Back-Track, DP)
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab"
,
Return
[ ["aa","b"], ["a","a","b"] ]
思路: 首先使用动态规划纪录从i到j是否是回文数;然后遍历字符串,对于dp[depth][i]有选择与不选择两种情况,所以使用带回溯的递归,回溯法注意在递归返回后要将递归前改动的内容复原。
class Solution { public: void backTracking(string s, int depth, vector<vector<bool>>& dp, vector<string>& current){ for(int i = depth; i <s.length(); i++){ if(dp[depth][i]){ current.push_back(s.substr(depth, i-depth+1)); if(i==s.length()-1) ret.push_back(current); else backTracking(s,i+1, dp,current); current.pop_back(); //back track } } } vector<vector<string>> partition(string s) { //dp[i][j]: s[i...j] is parlindrome //dp[i][j] = dp[i-1][j+1] && s[i]==s[j] //traverse order: shorter one should be checked first, like insert sort int len = s.length(); vector<vector<bool>> dp(len, vector<bool>(len, false)); vector<string> current; for(int i = 0; i < len; i++) dp[i][i]=true; for(int i = 1; i < len; i++){ for(int j = 0; j < i; j++){ //traverse the length if(s[i]==s[j]){ if(j==i-1) dp[j][i] = true; else dp[j][i]=dp[j+1][i-1]; } } } backTracking(s, 0, dp, current); return ret; } private: vector<vector<string>> ret; };