99. Recover Binary Search Tree (Tree; DFS)

Two elements of a binary search tree (BST) are swapped by mistake.

Recover the tree without changing its structure.

Note:
A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?

 
法I:BST的中序遍历结果是递增序列。把这个递增序列存储到数组中,再遍历一遍数组,便可知道swap的两个元素
class Solution {
public:
    void recoverTree(TreeNode *root) {
        vals.clear();
        treeNodes.clear();
        inorderTraverse(root);
        
        sort(vals.begin(), vals.end());
        for (int i = 0; i < treeNodes.size(); ++i)
        {
            treeNodes[i]->val = vals[i]; //只改变值,不改结构
        }
    }
    
    void inorderTraverse(TreeNode* root)
    {
        if (!root)
            return;
        
        inorderTraverse(root->left);
        vals.push_back(root->val);
        treeNodes.push_back(root);
        inorderTraverse(root->right);        
    }
private:
    vector<int> vals;  
    vector<TreeNode*> treeNodes;  
};

 

空间复杂度O(1)的解决方案:在中序遍历的时候,当第一次扫描到前一个节点>后一个节点,那么前一个节点必定错了;它要么就是和后一个节点交换,要么是和第二次扫描到前一个节点>后一个节点时的后一个节点交换。
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    void recoverTree(TreeNode* root) {
        TreeNode* pre = NULL; //当前访问节点的上一个节点
        TreeNode* swap1 = NULL;
        TreeNode* swap2 = NULL;
        inOrderTraverse(root,pre,swap1,swap2);
        
        int tmp = swap1->val;
        swap1->val = swap2->val;
        swap2->val = tmp;
    }
    
    void inOrderTraverse(TreeNode* root, TreeNode* &pre,TreeNode* &swap1,TreeNode* &swap2){ //important to use &, otherwise new object will use a new address and the result won't bring back to caller
        
        //visit left child
        if(root->left) inOrderTraverse(root->left,pre,swap1,swap2);

        //visit root
        if(pre && root->val < pre->val){
            swap2 = root;
            if(swap1==NULL) {
                swap1 = pre;
            }
        }
        pre = root;
        
        //visit right child
        if(root->right) inOrderTraverse(root->right,pre,swap1,swap2);
    }
};

 


 

 

 

posted on 2015-10-04 10:35  joannae  阅读(175)  评论(0编辑  收藏  举报

导航