4. Median of Two Sorted Arrays(Array; Divide-and-Conquer)
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
中位数:如果总数是偶数,那么中位数=中间两个数的平均数;如果总数是奇数,那么中位数=中间那个数的值
思路: O(logx)的算法,就想到二分法。二分法结束的条件是任何一个array只剩下一个元素了。每次递归(二分),去除某个array的一半。另外注意,每次二分至少要去掉一个元素。
class Solution { public: double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { int size1 = nums1.size(); int size2 = nums2.size(); int size = size1 + size2; int m = size >> 1; if(nums1.empty()){ if(size%2 == 1) return nums2[m]; else return (double) (nums2[m-1] + nums2[m])/2; } if(nums2.empty()){ if(size%2 == 1) return nums1[m]; else return (double) (nums1[m-1] + nums1[m])/2; } if(size%2 == 1) return findK(nums1, nums2, 0, size1-1, 0, size2-1, m); else return (double)(findK(nums1, nums2, 0, size1-1, 0, size2-1, m-1)+findK(nums1, nums2, 0, size1-1, 0, size2-1, m))/2; } int findK(vector<int>& nums1, vector<int>& nums2,int s1, int e1, int s2, int e2, int k){ if(s1 == e1){ if(k == 0) return min(nums1[s1],nums2[s2]); //为了防止s2+k-1越界 if(nums1[s1] < nums2[s2+k-1]) return nums2[s2+k-1]; else if(s2+k-1 == e2) return nums1[s1]; //为了防止s2+k越界 else return min(nums1[s1], nums2[s2+k]); } if(s2 == e2){ if(k == 0) return min(nums1[s1],nums2[s2]); //为了防止s1+k-1越界 if(nums2[s2] < nums1[s1+k]) return max(nums2[s2],nums1[s1+k-1]); else if(s1+k-1 == e1) return nums2[s2]; //为了防止s1+k越界 else return min(nums2[s2], nums1[s1+k]); } int m1 = s1+((e1-s1)>>1); int m2 = s2+((e2-s2)>>1); int halfLen = (e1 - s1 + e2 - s2 + 1) >> 1; if(k > halfLen){ //k is in the second half if(nums1[m1] < nums2[m2]){ //delete first half of num1 return findK(nums1, nums2, m1+1, e1, s2, e2, k-(m1-s1+1)); //+1是考虑到m1==s1的情况,注意每次二分至少要去除一个元素 } else{ //delete fist half of num2 return findK(nums1, nums2, s1, e1, m2+1, e2, k-(m2-s2+1));//+1是考虑到m2==s2的情况,注意每次二分至少要去除一个元素 } } else{ //k is in the first half if(nums1[m1] < nums2[m2]){ //delete second half of num2 return findK(nums1, nums2, s1, e1, s2, m2, k); } else{ //delete second half of num1 return findK(nums1, nums2, s1, m1, s2, e2, k); } } } };
改进:每次去掉(size1+size2)/2个元素。
假设数组A和B如下,k=6,那么令i=k/2, j =k-k/2
注意: j =k-k/2,保证i+j涵盖整个数组,否则测试用例 [1,2,6] [3,4,5,7,8],k=5的时候将会选取4和6,而不是4和5,原因是在某次比较A[1]和B[1](只有4个,k=5少了一个),选取了A的right subarray[2,6]和B的left subarray[3,4],漏选了Target元素5。如果使用j=k-k/2,那么将会比较A[1]和B[2](5个),从而也会保留B[2]。
B的前三个元素可去掉比较好理解,那么为什么A的后5个元素也能取掉呢?
=>即使B的后7个都比A的前三个大,B的前三个+A的前三个也已经满足k个要求,不需要A的后5个元素了。
class Solution { public: double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { int len = nums1.size() + nums2.size(); //see out to check null array if(nums1.empty()){ if(len%2 == 1) return nums2[(len >> 1)]; else return (double) (nums2[(len >> 1)-1] + nums2[(len >> 1)])/2; } if(nums2.empty()){ if(len%2 == 1) return nums1[(len >> 1)]; else return (double) (nums1[(len >> 1)-1] + nums1[(len >> 1)])/2; } if( len%2 == 1) return findK(nums1,0,nums1.size()-1, nums2, 0, nums2.size()-1,(len >> 1)); else { int m1 = findK(nums1,0,nums1.size()-1, nums2, 0, nums2.size()-1,(len >> 1)-1); int m2 = findK(nums1,0,nums1.size()-1, nums2, 0, nums2.size()-1,(len >> 1)); return (double) (m1+m2)/2; } } int findK(vector<int>& nums1,int s1,int e1, vector<int>& nums2, int s2, int e2, int k) { //termination if(k==0) return min(nums1[s1],nums2[s2]); if(s1==e1 && s2 == e2) { return max(nums1[s1],nums2[s2]); } if(s1 == e1){ // only one element in nums1 if(s2+k > e2){ //prevent overflow return max(nums1[s1],nums2[e2]); } else if(nums1[s1] < nums2[s2+k-1]) return nums2[s2+k-1]; else if(nums1[s1] < nums2[s2+k]) return nums1[s1]; else return nums2[s2+k]; } else if(s2 == e2){// only one element in nums2 if(s1+k > e1){ //prevent overflow return max(nums1[e1],nums2[s2]); } else if( nums2[s2] < nums1[s1+k-1]) return nums1[s1+k-1]; else if(nums2[s2] < nums1[s1+k]) return nums2[s2]; else return nums1[s1+k]; } //make the length of first half of m1 + first half of m2 = k int m1 = s1 + (k >> 1); if(m1 > e1){ //check overflow m1 = e1; } int m2 = s2 + k - (m1-s1+1); if(m2 > e2){ //check overflow m2 = e2; m1 = s1 + k - (m2-s2+1); } if((m1 == s1 && m2 == e2) || (m1==e1 && m2==s2)){ //try to make k-1 if(nums1[s1] < nums2[s2]) return findK(nums1,s1+1,e1,nums2,s2,e2,k-1); else return findK(nums1,s1,e1,nums2,s2+1,e2,k-1); } //compare two arrays if(nums1[m1]<nums2[m2]){ //remove first half of num1 and second half of num2 return findK(nums1,m1,e1,nums2,s2,m2,k-(m1-s1)); //need to guarantee ! (m1==s1 && m2==e2) } else{//remove first half of num2 and second half of num1 return findK(nums1,s1,m1,nums2,m2,e2,k-(m2-s2)); // need to guarantee ! (m1==e1 && m2==s2) } } };