72. Edit Distance (JAVA)
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u')
使用递归会造成Time limit exceeded
class Solution { public int minDistance(String word1, String word2) { StringBuffer strBuf1 = new StringBuffer(word1); StringBuffer strBuf2 = new StringBuffer(word2); return dfs(strBuf1,strBuf2,0,0,0); } public int insert(StringBuffer strBuf1, StringBuffer strBuf2, int i1, int i2, int depth){ strBuf1.insert(i1, strBuf2.charAt(i2)); int ret = dfs(strBuf1,strBuf2,i1+1, i2+1,depth+1); strBuf1.deleteCharAt(i1); //recover return ret; } public int delete(StringBuffer strBuf1, StringBuffer strBuf2, int i1, int i2, int depth){ Character ch = strBuf1.charAt(i1); strBuf1.deleteCharAt(i1); int ret = dfs(strBuf1,strBuf2,i1, i2,depth+1); strBuf1.insert(i1,ch); //recover; return ret; } public int replace(StringBuffer strBuf1, StringBuffer strBuf2, int i1, int i2, int depth){ Character ch = strBuf1.charAt(i1); strBuf1.setCharAt(i1, strBuf2.charAt(i2)); int ret = dfs(strBuf1,strBuf2,i1+1, i2+1,depth+1); strBuf1.setCharAt(i1, ch); return ret; } private int dfs(StringBuffer strBuf1, StringBuffer strBuf2, int i1, int i2, int depth){ while(i1 < strBuf1.length() && i2 < strBuf2.length() && strBuf1.charAt(i1) == strBuf2.charAt(i2)){ i1++; i2++; } if(i1 == strBuf1.length() && i2 == strBuf2.length()) return depth; if(i1 == strBuf1.length()) return depth+strBuf2.length()-i2; if(i2 == strBuf2.length()) return depth+strBuf1.length()-i1; int ret = insert(strBuf1,strBuf2,i1,i2,depth); ret = Math.min(ret,delete(strBuf1,strBuf2,i1,i2,depth)); ret = Math.min(ret,replace(strBuf1,strBuf2,i1,i2,depth)); return ret; } }
使用动态规划dp[i][j]表示从word1[i+1]位置到word2[j+1]位置 需要改变次数。
class Solution { public int minDistance(String word1, String word2) { int[][] dp = new int[word1.length()+1][word2.length()+1]; for(int i = 0; i <= word1.length(); i++){ dp[i][0] = i; } for(int j = 0; j <= word2.length(); j++){ dp[0][j] = j; } for(int i = 1; i <= word1.length(); i++){ for(int j = 1; j <= word2.length(); j++){ if(word1.charAt(i-1) == word2.charAt(j-1)){ dp[i][j] = dp[i-1][j-1]; } else{ dp[i][j] = 1+Math.min(dp[i-1][j-1],Math.min(dp[i-1][j],dp[i][j-1])); //insert & replace: dp[i-1][j-1] +1; delete: dp[i-1][j],dp[i][j-1] } } } return dp[word1.length()][word2.length()]; } }