53. Maximum Subarray (JAVA)
iven an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
法I: 动态规划法
class Solution { public int maxSubArray(int[] nums) { int maxSum = Integer.MIN_VALUE; //注意有负数的时候,不能初始化为0 int currentSum = Integer.MIN_VALUE; for(int i = 0; i < nums.length; i++){ if(currentSum < 0) currentSum = nums[i]; else currentSum += nums[i]; if(currentSum > maxSum) maxSum = currentSum; } return maxSum; } }
法II:分治法
class Solution { public int maxSubArray(int[] nums) { return partialMax(nums,0,nums.length-1); } public int partialMax(int[] nums, int start, int end){ if(start == end) return nums[start]; int mid = start + ((end-start) >> 1); int leftMax = partialMax(nums,start, mid); int rightMax = partialMax(nums,mid+1,end); int maxSum = Math.max(leftMax,rightMax); int lMidMax = Integer.MIN_VALUE; int rMidMax = Integer.MIN_VALUE; int current = 0; for(int i = mid; i >= start; i--){ current += nums[i]; if(current > lMidMax) lMidMax = current; } current = 0; for(int i = mid+1; i <= end; i++){ current += nums[i]; if(current > rMidMax) rMidMax = current; } if(lMidMax > 0 && rMidMax > 0) maxSum = Math.max(lMidMax + rMidMax,maxSum); else if(lMidMax > rMidMax) maxSum = Math.max(lMidMax,maxSum); else maxSum = Math.max(rMidMax,maxSum); return maxSum; } }