-
-
验证多线程是否有用
-
死锁现象(强调锁不能随便使用)
-
信号量与event事件
-
进程池与线程池
-
协程
GIL与普通锁互斥锁区别
# 1.先验证GIL的存在
from threading import Thread, Lock
import time
money = 100
def task():
global money
money -= 1
for i in range(100): # 创建一百个线程
t = Thread(target=task)
t.start()
print(money)
# 2.在验证不同数据加不同锁
from threading import Thread, Lock
import time
money = 100
mutex = Lock()
def task():
global money
mutex.acquire()
tmp = money
time.sleep(0.1)
money = tmp - 1
mutex.release()
"""
抢锁放锁也有简便写法(with上下文管理)
with mutex:
pass
"""
t_list = []
for i in range(100): # 创建一百个线程
t = Thread(target=task)
t.start()
t_list.append(t)
for t in t_list:
t.join()
# 为了确保结构正确 应该等待所有的线程运行完毕再打印money
print(money)
"""
GIL是纯理论知识 在实际工作中根本无需考虑它的存在
GIL作用面很窄 仅限于解释器级别
后期我们想要保证数据的安全应该自定义互斥锁(使用别人封装好的工具
)
"""
验证多线程作用
"""
两个大前提
CPU的个数
单个
多个
任务的类型
IO密集型
计算密集型
"""
# 单个CPU
多个IO密集型任务
多进程:浪费资源 无法利用多个CPU
多线程:节省资源 切换+保存状态
多个计算密集型任务
多进程:耗时更长 创建进程的消耗+切换消耗
多线程:耗时较短 切换消耗
# 多个CPU
多个IO密集型任务
多进程:浪费资源 多个CPU无用武之地
多线程:节省资源 切换+保存状态
多个计算密集型任务
多进程:利用多核 速度更快
多线程: 速度较慢
结论:多进程和多线程都有具体的应用场景 尤其是多线程并不是没有用
if __name__ == '__main__':
print(os.cpu_count()) # 12 查看当前计算机CPU个数
start_time = time.time()
p_list = []
for i in range(12):
p = Process(target=work)
p.start()
p_list.append(p)
for p in p_list:
p.join()
print('总耗时:%s' % (time.time() - start_time))
t_list = []
for i in range(12):
t = Thread(target=work)
t.start()
t_list.append(t)
for t in t_list:
t.join()
print('总耗时:%s' % (time.time() - start_time))
"""
计算密集型
多进程
总耗时:0.4248642921447754
多线程
总耗时:0.6830117702484131
结论:多进程更好
"""
def work():
time.sleep(2) # 模拟纯IO操作
if __name__ == '__main__':
start_time = time.time()
t_list = []
for i in range(100):
t = Thread(target=work)
t.start()
for t in t_list:
t.join()
print('总耗时:%s' % (time.time() - start_time))
p_list = []
for i