聊聊jstack的工作原理
实现一个jstack
在聊Jstack得工作原理前呢,不如让我们先写一个简单的jstack玩玩。不用怕,很简单的,就几行代码的事,看:
public class MyJstack { public static void main(String[] args)throws Exception { VirtualMachine virtualMachine = VirtualMachine.attach("6361"); HotSpotVirtualMachine hotSpotVirtualMachine = (HotSpotVirtualMachine)virtualMachine; InputStream inputStream = hotSpotVirtualMachine.remoteDataDump(new String[]{}); byte[] buff = new byte[256]; int len; do { len = inputStream.read(buff); if (len > 0) { String respone = new String(buff, 0, len, "UTF-8"); System.out.print(respone); } } while(len > 0); inputStream.close(); virtualMachine.detach(); } }
很简单吧,贴到你的开发环境里,运行就好了,别忘了把6361这个进程号换成你自己的Java进程号哦。
实现原理
jstack有两种实现方式,一种是基于attach api,其实现可以在tools.jar里找到;另一种是基于SA的实现,它被放在了sa-jdi.jar里。如果你通过idea搜索Jstack类,你会看到tools.jar和sa-jdi.jar各有一个Jstack类。
本文呢,就通过分析attch api的源码,来了解jstack的工作原理。
jstack本地源码实现
我们来看一下HotSpotVirtualMachine的remoteDataDump方法:
public InputStream remoteDataDump(Object... var1) throws IOException { return this.executeCommand("threaddump", var1); }
他是在执行一个叫threaddump的命令。沿着这个executeCommand方法继续往里追,会发现他是调用了如下方法:
InputStream execute(String var1, Object... var2) throws AgentLoadException, IOException { assert var2.length <= 3; String var3; synchronized(this) { if (this.path == null) { throw new IOException("Detached from target VM"); } var3 = this.path; } int var4 = socket(); try { connect(var4, var3); } catch (IOException var9) { close(var4); throw var9; } IOException var5 = null; try { this.writeString(var4, "1"); this.writeString(var4, var1);
var1参数就是我们的threaddump指令,不难看出,这个方法是建立了一个socket连接,然后将threaddump指令发送给另一端,即我们要检查的jvm进程。
注意:限于篇幅我并没有贴整个方法代码。execute是HotSpotVirtualMachine的抽象方法,不同平台的jdk有不同的execute方法的实现,我这里的代码是mac下的execute实现,位于BsdVirtualMachine类中。
通过jtack本地源代码,我们大致可以粗略的认为:jstack就是通过与指定的jvm进程建立socket连接,然后发送指令,最后将jvm进程返回的内容打印出来。
JVM的源码实现
了解了jstack的本地源码,我们在看看jvm进程是如何处理的。
当我们使用Java命令启动jvm进程时,Java命令会加载虚拟机共享库,然后执行共享库里的JNI_CreateJavaVM方法完成虚拟机的创建,在JNI_CreateJavaVM方法里会调用如下代码,完成具体的一个创建过程:
result = Threads::create_vm((JavaVMInitArgs*) args, &can_try_again);
如果你有心,或许会留意到,在你启动一个jvm进程时,即便你什么线程也没创建,你用jstack查看还是有很多的线程,如:Signal Dispatcher,VM Thread,Attach Listener等等。当过阅读本文,你会了解到这三个线程的作用。
01 VM Thread线程
Threads::create_vm这个方法很长,接下来咱们跳出一些重要的段落,来分析分析。
// Create the VMThread { TraceTime timer("Start VMThread", TraceStartupTime); VMThread::create();//创建Thread对象 Thread* vmthread = VMThread::vm_thread(); if (!os::create_thread(vmthread, os::vm_thread))//调用操作系统api创建线程 vm_exit_during_initialization("Cannot create VM thread. Out of system resources."); // Wait for the VM thread to become ready, and VMThread::run to initialize // Monitors can have spurious returns, must always check another state flag { MutexLocker ml(Notify_lock); os::start_thread(vmthread);//启动线程 while (vmthread->active_handles() == NULL) { Notify_lock->wait(); } } }
通过注释,你也知道,这一段代码是从来创建VM Thread线程的。VMThread::create()完成了对现成的命名工作,代码如下:
void VMThread::create() { assert(vm_thread() == NULL, "we can only allocate one VMThread"); _vm_thread = new VMThread(); // Create VM operation queue _vm_queue = new VMOperationQueue(); guarantee(_vm_queue != NULL, "just checking"); _terminate_lock = new Monitor(Mutex::safepoint, "VMThread::_terminate_lock", true); if (UsePerfData) { // jvmstat performance counters Thread* THREAD = Thread::current(); _perf_accumulated_vm_operation_time = PerfDataManager::create_counter(SUN_THREADS, "vmOperationTime", PerfData::U_Ticks, CHECK); } } VMThread::VMThread() : NamedThread() { set_name("VM Thread"); }
通过new VMThread()创建线程对象,在VMThread的构造方法里将线程命名成VM Thread,这就是我们jstack看到的VM Thread线程,同时还为这个线程创建了一个叫VMOperationQueue的队列。
至于VM Thread线程的作用,我们留到最后再说。
02 Signal Dispatcher线程
继续沿着 Threads::create_vm方法往下看,我们会看到如下代码:
// Signal Dispatcher needs to be started before VMInit event is posted os::signal_init();
这一句代码实现了Signal Dispatcher线程的创建,进入到signal_init()方法看看:
void os::signal_init() { if (!ReduceSignalUsage) { // Setup JavaThread for processing signals EXCEPTION_MARK; Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); instanceKlassHandle klass (THREAD, k); instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); const char thread_name[] = "Signal Dispatcher"; Handle string = java_lang_String::create_from_str(thread_name, CHECK); // Initialize thread_oop to put it into the system threadGroup Handle thread_group (THREAD, Universe::system_thread_group()); JavaValue result(T_VOID); JavaCalls::call_special(&result, thread_oop, klass, vmSymbols::object_initializer_name(), vmSymbols::threadgroup_string_void_signature(), thread_group, string, CHECK); KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass()); JavaCalls::call_special(&result, thread_group, group, vmSymbols::add_method_name(), vmSymbols::thread_void_signature(), thread_oop, // ARG 1 CHECK); os::signal_init_pd(); { MutexLocker mu(Threads_lock); JavaThread* signal_thread = new JavaThread(&signal_thread_entry); // At this point it may be possible that no osthread was created for the // JavaThread due to lack of memory. We would have to throw an exception // in that case. However, since this must work and we do not allow // exceptions anyway, check and abort if this fails. if (signal_thread == NULL || signal_thread->osthread() == NULL) { vm_exit_during_initialization("java.lang.OutOfMemoryError", "unable to create new native thread"); } java_lang_Thread::set_thread(thread_oop(), signal_thread); java_lang_Thread::set_priority(thread_oop(), NearMaxPriority); java_lang_Thread::set_daemon(thread_oop()); signal_thread->set_threadObj(thread_oop()); Threads::add(signal_thread); Thread::start(signal_thread); } // Handle ^BREAK os::signal(SIGBREAK, os::user_handler()); } }
在这个方法里,我们可以看到要创建的线程名字:Signal Dispatcher,以及线程启动后调用的方法signal_thread_entry。(方法较长,看重点就好,没必要每句话都扣清楚)。
有了对上边代码的分析,我们只需要看看signal_thread_entry方法,就知道Signal Dispatcher线程的作用了。
static void signal_thread_entry(JavaThread* thread, TRAPS) { os::set_priority(thread, NearMaxPriority); while (true) { int sig; { // FIXME : Currently we have not decieded what should be the status // for this java thread blocked here. Once we decide about // that we should fix this. sig = os::signal_wait();//等待获取信号 } if (sig == os::sigexitnum_pd()) { // Terminate the signal thread return; } switch (sig) { case SIGBREAK: { // Check if the signal is a trigger to start the Attach Listener - in that // case don't print stack traces. if (!DisableAttachMechanism && AttachListener::is_init_trigger()) { continue; } // Print stack traces // Any SIGBREAK operations added here should make sure to flush // the output stream (e.g. tty->flush()) after output. See 4803766. // Each module also prints an extra carriage return after its output. VM_PrintThreads op; VMThread::execute(&op); VM_PrintJNI jni_op; VMThread::execute(&jni_op); VM_FindDeadlocks op1(tty); VMThread::execute(&op1); Universe::print_heap_at_SIGBREAK(); if (PrintClassHistogram) { VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */); VMThread::execute(&op1); } if (JvmtiExport::should_post_data_dump()) { JvmtiExport::post_data_dump(); } break;
这个方法里调用os::signal_wait()获取传给该jvm进程的信号,然后对信号进行处理。
说下case SIGBREAK里的处理逻辑,当接收到SIGBREAK信号时,会先判断是否禁止Attach机制,如果没有禁止,会调用AttachListener::is_init_trigger()方法触发Attach Listener线程的初始化.如果attach机制被禁用,则会创建VM_PrintThreads、VM_PrintJNI、VM_FindDeadlocks等代表某一个操作的对象,通过VMThread::execute()方法扔到VM Thread线程的VMOperationQueue队列。
03 Attach Listener线程
继续沿着 Threads::create_vm方法往下看,在紧挨着启动Signal Dispatcher线程的下边,就是启动Attach Listener线程的语句:
// Start Attach Listener if +StartAttachListener or it can't be started lazily if (!DisableAttachMechanism) { AttachListener::vm_start(); if (StartAttachListener || AttachListener::init_at_startup()) { AttachListener::init(); } }
重点就在AttachListener::init()方法里:
// Starts the Attach Listener thread void AttachListener::init() { EXCEPTION_MARK; Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); instanceKlassHandle klass (THREAD, k); instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); const char thread_name[] = "Attach Listener"; Handle string = java_lang_String::create_from_str(thread_name, CHECK); // Initialize thread_oop to put it into the system threadGroup Handle thread_group (THREAD, Universe::system_thread_group()); JavaValue result(T_VOID); JavaCalls::call_special(&result, thread_oop, klass, vmSymbols::object_initializer_name(), vmSymbols::threadgroup_string_void_signature(), thread_group, string, THREAD); if (HAS_PENDING_EXCEPTION) { tty->print_cr("Exception in VM (AttachListener::init) : "); java_lang_Throwable::print(PENDING_EXCEPTION, tty); tty->cr(); CLEAR_PENDING_EXCEPTION; return; } KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass()); JavaCalls::call_special(&result, thread_group, group, vmSymbols::add_method_name(), vmSymbols::thread_void_signature(), thread_oop, // ARG 1 THREAD); if (HAS_PENDING_EXCEPTION) { tty->print_cr("Exception in VM (AttachListener::init) : "); java_lang_Throwable::print(PENDING_EXCEPTION, tty); tty->cr(); CLEAR_PENDING_EXCEPTION; return; } { MutexLocker mu(Threads_lock); JavaThread* listener_thread = new JavaThread(&attach_listener_thread_entry); // Check that thread and osthread were created if (listener_thread == NULL || listener_thread->osthread() == NULL) { vm_exit_during_initialization("java.lang.OutOfMemoryError", "unable to create new native thread"); } java_lang_Thread::set_thread(thread_oop(), listener_thread); java_lang_Thread::set_daemon(thread_oop()); listener_thread->set_threadObj(thread_oop()); Threads::add(listener_thread); Thread::start(listener_thread); } }
我们可以通过代码看出其创建了一个叫Attach Listener的线程,线程执行的逻辑封装在了attach_listener_thread_entry方法里。
Attach Listener线程的作用,我们看看attach_listener_thread_entry方法便知:
static void attach_listener_thread_entry(JavaThread* thread, TRAPS) { os::set_priority(thread, NearMaxPriority); thread->record_stack_base_and_size(); if (AttachListener::pd_init() != 0) { return; } AttachListener::set_initialized(); for (;;) { AttachOperation* op = AttachListener::dequeue();//从队列里获取操作对象 if (op == NULL) { return; // dequeue failed or shutdown } ResourceMark rm; bufferedStream st; jint res = JNI_OK; // handle special detachall operation if (strcmp(op->name(), AttachOperation::detachall_operation_name()) == 0) { AttachListener::detachall(); } else { // find the function to dispatch too AttachOperationFunctionInfo* info = NULL; for (int i=0; funcs[i].name != NULL; i++) { const char* name = funcs[i].name; assert(strlen(name) <= AttachOperation::name_length_max, "operation <= name_length_max"); if (strcmp(op->name(), name) == 0) { info = &(funcs[i]); break; } } // check for platform dependent attach operation if (info == NULL) { info = AttachListener::pd_find_operation(op->name()); } if (info != NULL) { // dispatch to the function that implements this operation res = (info->func)(op, &st);//执行操作对象 } else { st.print("Operation %s not recognized!", op->name()); res = JNI_ERR; } } // operation complete - send result and output to client op->complete(res, &st); } }
方法很长,我把重点挑出来分析。
首先我们看看调用AttachListener::pd_init()完了什么:
int AttachListener::pd_init() { JavaThread* thread = JavaThread::current(); ThreadBlockInVM tbivm(thread); thread->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() or // java_suspend_self() via check_and_wait_while_suspended() int ret_code = LinuxAttachListener::init(); // were we externally suspended while we were waiting? thread->check_and_wait_while_suspended(); return ret_code; } int LinuxAttachListener::init() { char path[UNIX_PATH_MAX]; // socket file char initial_path[UNIX_PATH_MAX]; // socket file during setup int listener; // listener socket (file descriptor) // register function to cleanup ::atexit(listener_cleanup); int n = snprintf(path, UNIX_PATH_MAX, "%s/.java_pid%d", os::get_temp_directory(), os::current_process_id()); if (n < (int)UNIX_PATH_MAX) { n = snprintf(initial_path, UNIX_PATH_MAX, "%s.tmp", path); } if (n >= (int)UNIX_PATH_MAX) { return -1; } // create the listener socket listener = ::socket(PF_UNIX, SOCK_STREAM, 0);//创建套接字 if (listener == -1) { return -1; } // bind socket struct sockaddr_un addr; addr.sun_family = AF_UNIX; strcpy(addr.sun_path, initial_path); ::unlink(initial_path); int res = ::bind(listener, (struct sockaddr*)&addr, sizeof(addr));//绑定地址 if (res == -1) { ::close(listener); return -1; } // put in listen mode, set permissions, and rename into place res = ::listen(listener, 5);//发起监听 if (res == 0) { RESTARTABLE(::chmod(initial_path, S_IREAD|S_IWRITE), res); if (res == 0) { res = ::rename(initial_path, path); } } if (res == -1) { ::close(listener); ::unlink(initial_path); return -1; } set_path(path); set_listener(listener); return 0; }
不难发现,AttachListener::pd_init()方法又调用了LinuxAttachListener::init()方法,完成了对套接字的创建和监听。这与jstack本地代码建立socket连接发送命令,不谋而合。
再就是有一个for死循环,不停地调用AttachOperation* op = AttachListener::dequeue();获取操作对象。如果进入到AttachListener::dequeue()方法看一看,其实就是在读上边监听的套接字,我这里就不贴源码了。
在这个死循环里,我们重点看看如下代码:
// find the function to dispatch too AttachOperationFunctionInfo* info = NULL; for (int i=0; funcs[i].name != NULL; i++) { const char* name = funcs[i].name; assert(strlen(name) <= AttachOperation::name_length_max, "operation <= name_length_max"); if (strcmp(op->name(), name) == 0) { info = &(funcs[i]); break; } } // check for platform dependent attach operation if (info == NULL) { info = AttachListener::pd_find_operation(op->name()); } if (info != NULL) { // dispatch to the function that implements this operation res = (info->func)(op, &st);//调动方法 } else { st.print("Operation %s not recognized!", op->name()); res = JNI_ERR; } } // operation complete - send result and output to client op->complete(res, &st);
这个for循环会遍历funcs数组,然后根据从队列里拿到的AttachOperation对象的name来找到一个匹配的AttachOperationFunctionInfo对象,然后调用其func方法。
看到这里你或许很多疑惑,当然看看funcs数组里的东西,就开朗了:
static AttachOperationFunctionInfo funcs[] = { { "agentProperties", get_agent_properties }, { "datadump", data_dump }, { "dumpheap", dump_heap }, { "load", JvmtiExport::load_agent_library }, { "properties", get_system_properties }, { "threaddump", thread_dump }, { "inspectheap", heap_inspection }, { "setflag", set_flag }, { "printflag", print_flag }, { "jcmd", jcmd }, { NULL, NULL } };
有没有看到上文中我们提到的threaddump命令。jstack通过与jvm进程建立socket连接,然后向jvm进程发送threaddump指令。上文说道调用AttachOperationFunctionInfo对象的func方法处理指令,其实就是调用了thread_dump方法,针对threaddump命令来说。
坚持,马上就要说完了。来看看thread_dump方法干了些啥吧:
// Implementation of "threaddump" command - essentially a remote ctrl-break // See also: ThreadDumpDCmd class // static jint thread_dump(AttachOperation* op, outputStream* out) { bool print_concurrent_locks = false; if (op->arg(0) != NULL && strcmp(op->arg(0), "-l") == 0) { print_concurrent_locks = true; } // thread stacks VM_PrintThreads op1(out, print_concurrent_locks); VMThread::execute(&op1); // JNI global handles VM_PrintJNI op2(out); VMThread::execute(&op2); // Deadlock detection VM_FindDeadlocks op3(out); VMThread::execute(&op3); return JNI_OK; }
很简单,创建了VM_PrintThreads、VM_PrintJNI、VM_FindDeadlocks三个对象,扔给了VM Thread线程的队列。
说到这里,VM Thread线程的作用,应该真相大白了,就是读取队列,然后执行相应的操作。有兴趣你可以继续追进去看看源代码,我这里就不追下去了。
总结
看了这么多代码,确实很头疼,总结下吧。
jstack是通过与jvm进程建立socket连接,然后发送指令来实现相关操作。
jvm的Attach Listener线程监听套接字,读取jstack发来的指令,然后将相关的操作扔给VM Thread线程来执行,最后返回给jstack。
在jvm启动的时候,如果没有指定StartAttachListener,Attach Listener线程是不会启动的,在Signal Dispatcher线程收到SIGBREAK信号时,会调用 AttachListener::is_init_trigger()通过调用用AttachListener::init()启动了Attach Listener 线程。
加入知识星球,可以有更多的交流,更多的学习和更快的提高。