javscript简单的算法笔记

1.冒泡排序:

   冒泡排序是一种简单的排序算法,它重复地访问要排序的数列,一次比较两个元素,如
果它们的顺序错误就把它们交换过来。访问数列的工作是重复地进行直到没有在需要交换,
也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”
到数列的顶端。    

              具体算法描述如下:
                  <1>.比较相邻的元素。如果第一个比第二个大,就交换它们两个;
                  <2>.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最
              后的元素应该会是最大的数;
                   <3>.针对所有的元素重复以上的步骤,除了最后一个;
                   <4>.重复步骤1~3,直到排序完成。

function bubbleSort(arr) {
                 var len = arr.length;
                 for (var i = 0; i < len; i++) { 
                       for (var j = 0; j < len - 1; j++) {
                               if (arr[j] < arr[j + 1]) { // 相 邻 两 个 元 素 对 比
                                     var temp = arr[j + 1]; // 元 素 交 换
                                     arr[j + 1] = arr[j]; 
                                     arr[j] = temp; 
                                 } 
                         } 
                   }
                   return arr; 
        }
         var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]; 
         bubbleSort(arr);

改进冒泡排序:设置一标志性变量pos,用于记录每趟排序中最后一次进行交换的位置。
由于pos位置之后的记录均已交换到位,故在进行下一趟排序时只要扫描到pos位置即可。

function bubbleSort2(arr) {
             console.time('改进后冒泡排序耗时'); 
             var i = arr.length;
             while (i > 0) {
                    var pos = 0; 
                    for (var j = 0; j < i; j++) {
                           if (arr[j] > arr[j + 1]) {
                               pos = j;
                               var tmp = arr[j];
                               arr[j] = arr[j + 1];
                               arr[j + 1] = tmp; 
                    } 
               }
          i = pos;
     }
    console.timeEnd('改进后冒泡排序耗时'); 
    return arr;
}

传统冒泡排序中每一趟排序操作只能找到一个最大值或最小值,我们考虑利用在每趟排
序中进行正向和反向两遍冒泡的方法一次可以得到两个最终值(最大者和最小者) , 从而使
排序趟数几乎减少了一半。

function bubbleSort3(arr) { 
                   var low = 0; 
                   var high = arr.length - 1;
                   var tmp, j;
                   console.time('2.改进后冒泡排序耗时'); 
                   while (low < high) { 
                        for (j = low; j < high; ++j) { // 正 向 冒 泡 找 到 最 大 值
                              if (arr[j] > arr[j + 1]) {
                                    tmp = arr[j]; 
                                    arr[j] = arr[j + 1]; 
                                    arr[j + 1] = tmp; 
                      } 
               }; 
        --high;
            for (j = high; j > low; --j) {
                     if (arr[j] < arr[j - 1]) {
                          tmp = arr[j]; 
                          arr[j] = arr[j - 1];
                          arr[j - 1] = tmp;
                 }
             } 
      ++low; 
      }
         console.timeEnd('2.改进后冒泡排序耗时'); 
         return arr;
}

 

 

2.选择排序:表现最稳定的排序算法之一。

   选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序
序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继
续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

           n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
                 <1>.初始状态:无序区为R[1..n],有序区为空;
                 <2>.第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。
          该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R
          交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个
          的新无序区;
                 <3>.n-1趟结束,数组有序化了。

   

function selectionSort(arr) {
                var len = arr.legnth; 
                var minIndex, temp; 
                console.time('选择排序耗时');
                for (var i = 0; i < len - 1; i++) {
                     minIndex = i; 
                     for (var j = i + 1; j < len; j++) {
                         if (arr[j] < arr[minIndex]) { // 寻 找 最 小 的 数
                              minIndex = j; // 将 最 小 数 的 索 引 保 存 
                } 
            } 
                       temp = arr[i];
                       arr[i] = arr[minIndex]; 
                       arr[minIndex] = temp;
    } 
               console.timeEnd('选择排序耗时'); 
               return arr;
}

3.插入排序:

   插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是
通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而
在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

       一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
                <1>.从第一个元素开始,该元素可以认为已经被排序;
                <2>.取出下一个元素,在已经排序的元素序列中从后向前扫描;
                <3>.如果该元素(已排序)大于新元素,将该元素移到下一位置;
                <4>.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
                <5>.将新元素插入到该位置后;
                <6>.重复步骤2~5。

function insertionSort(array) {
            if (Object.prototype.toString.call(array).slice(8, -1) ==='Array'{ 
                      console.time('插入排序耗时:');
                      for (var i = 1; i < array.length; i++) { 
                          var key = array[i]; 
                          var j = i - 1; 
                          while (j >= 0 && array[i] > key) { 
                               array[j + 1] = array[j];
                                  j--;
                          }
                              array[j + 1] = key; 
                    }
                   console.timeEnd('插入排序耗时:'); 
                   return array;
                  } else { 
                        return 'array is not an Array!'; 
              }
       }
改进插入排序: 查找插入位置时使用二分查找的方式
function binaryInsertionSort(array) {
                 if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
                   console.time('二分插入排序耗时:'); 
                   for (var i = 1; i < array.length; i++) {
                   var key = array[i],
                   left = 0, 
                   right = i - 1;
               while (left <= right) { 
                     var middle = parseInt((left + right) / 2);
                     if (key < array[middle]) {
                        right = middle - 1;
                   }
                     else { left = middle + 1;
               }
          }
                 for (var j = i - 1; j >= left; j--) { 
                 array[j + 1] = array[j];
             }
                 array[left] = key; 
             }
                 console.timeEnd('二分插入排序耗时:'); 
                 return array;
            }
            else { return 'array is not an Array!'; 
     }
 }

 

4.希尔排序:

   希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义
间隔序列。动态定义间隔序列的算法是《算法(第4 版》的合著者 Robert Sedgewick 提
出的。           

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描
述:
  <1>. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  <2>.按增量序列个数k,对序列进行k 趟排序;
  <3>.每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别
  对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即
  为整个序列的长度

           

function shellSort(arr) { 
               var len = arr.legnth, 
               temp, gap = 1;
               console.time('希尔排序耗时:');
               while (gap < len / 5) { // 动 态 定 义 间 隔 序 列 
                       gap = gap * 5 + 1; 
               }
                for (gap; gap > 0; gap = Math.floor(gap / 5)) {
                     for (var i = gap; i < len; i++) {
                         temp = arr[i];
                         for (var j = i - gap; j >= 0 && arr[j] > temp; j -= gap) { 
                               arr[j + gap] = arr[j]; 
                             } 
                                  arr[j + gap] = temp; 
                           }
                      } 
                        console.timeEnd('希尔排序耗时:');
                        return arr; 
}

 

 

5.归并排序:

   归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide
andConquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序
列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有
序表合并成一个有序表,称为2-路归并

6.快速排序:

   快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分
记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达
到整个序列有序。

  快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描
述如下:
  <1>.从数列中挑出一个元素,称为 “基准”(pivot);
  <2>.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大
的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数
列的中间位置。这个称为分区(partition)操作;
  <3>.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排
序。

// 方 法 一
    function quickSort(array, left, right) { 
        console.time('1.快速排序耗时'); 
           if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number') {
             if (left < right) {
                        var x = array[right],
                        i = left - 1, temp; 
                        for (var j = left;
                        j <= right; j++) {
                        if (array[j] <= x) {
                           i++;
                          temp = array[i]; 
                         array[i] = array[j]; 
                         array[j] = temp; 
            }
         }
                       quickSort(array, left, i - 1);
                       quickSort(array, i + 1, right);
             } 
                       console.timeEnd('1.快速排序耗时');
                       return array; 
} else {
                      return 'array is not an Array or left or right is not a number!'; 
     }
 }
 // 方 法 二 
                     var quickSort2 = function(arr) {
                          console.time('2.快速排序耗时');
                            if (arr.length <= 1) {
                                return arr; 
} 
                     var pivotIndex = Math.floor(arr.length / 2); 
                     var pivot = arr.splice(pivotIndex, 1)[0]; 
                     var left = [];
                     var right = []; 
                     for (var i = 0; i < arr.length; i++) {
                     if (arr[i] < pivot) {
                                    left.push(arr[i]);
 } else {
                    right.push(arr[i]);
        }
    }
            console.timeEnd('2.快速排序耗时');
            return quickSort2(left).concat([pivot], quickSort2(right));
};
           console.log(quickSort(arr, 0, arr.length - 1));

console.log(quickSort2(arr));

 

7.堆排序:

   堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一
个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或
者大于)它的父节点。

  具体算法描述如下:
  <1>.将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  <2>.将堆顶元素 R[1]与最后一个元素 R[n]交换,此时得到新的无序区
(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  <3>.由于交换后新的堆顶 R[1]可能违反堆的性质,因此需要对当前无序区
(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无
序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为
n-1,则整个排序过程完成。
function heapSort(array) { console.time('堆排序耗时'); if (Object.prototype.toString.call(array).slice

function heapSort(array) {
              console.time('堆排序耗时');
              if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {         
             // 建 堆
             var heapSize = array.length, temp; 
             for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i--) { 
             heapify(array, i, heapSize);
         }
            // 堆 排 序
            for (var j = heapSize - 1; j >= 1; j--) {
             temp = array[0]; 
             array[0] = array[j];
             array[j] = temp;
             heapify(array, 0, --heapSize);
       }
            console.timeEnd('堆排序耗时');
            return array; 
       } 
         else { 
           return 'array is not an Array!'; 
      }
  }
function heapify(arr, x, len) {
          if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === ' number') {
          var l = 2 * x + 1,
          r = 2 * x + 2,
          largest = x, temp; 
          if (l < len && arr[l] > arr[largest]) {
           largest = l;
         }
          if (r < len && arr[r] > arr[largest]) {
             largest = r; 
        } 
         if (largest != x) {
          temp = arr[x];
          arr[x] = arr[largest];
          arr[largest] = temp;
          heapify(arr, largest, len); 
        }
        }
        else {
         return 'arr is not an Array or x is not a number!'; 
      }
 }
    

 

8.计数排序:

   计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组
C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A
中的元素排到正确的位置。它只能对整数进行排序。

  具体算法描述如下:
  <1>. 找出待排序的数组中最大和最小的元素;
  <2>. 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
  <3>. 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
  <4>. 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将
C(i)减去1。

function countingSort(array) { 
              var len = array.length,
              B = [], 
              C = [], 
              min = max = array[0];
              console.time('计数排序耗时'); 
              for (var i = 0; i < len; i++) {
              min = min <= array[i] ? min : array[i];
              max = max >= array[i] ? max : array[i];
             C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1; 
          } 
             for (var j = min;
             j < max; j++) {
              C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);
         }
            for (var k = len - 1; k >= 0; k--) {
                B[C[array[k]] - 1] = array[k];
                C[array[k]]--;
          }
             console.timeEnd('计数排序耗时'); 
             return B;
 }

 

9.桶排序;

   桶排序 (Bucketsort)的工作的原理:假设输入数据服从均匀分布,将数据分到有
限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使
用桶排序进行排序。

  具体算法描述如下:
  <1>.设置一个定量的数组当作空桶;
  <2>.遍历输入数据,并且把数据一个一个放到对应的桶里去;
  <3>.对每个不是空的桶进行排序;
  <4>.从不是空的桶里把排好序的数据拼接起来。

function bucketSort(array, num) {
               if (array.length <= 1) {
                  return array;
         }
             var len = array.length,
             buckets = [], 
             result = [], 
             min = max = array[0],
             regex = '/^[1-9]+[0-9]*$/', 
             space, n = 0; 
             num = num || ((num > 1 && regex.test(num)) ? num : 10); 
             console.time('桶排序耗时');
             for (var i = 1; i < len; i++) {
             min = min <= array[i] ? min : array[i];
            max = max >= array[i] ? max : array[i];
         } 
            space = (max - min + 1) / num;
            for (var j = 0; j < len; j++) {
               var index = Math.floor((array[j] - min) / space); 
                   if (buckets[index]) { // 非 空 桶 , 插 入 排 序 
                      var k = buckets[index].length - 1; 
                        while (k >= 0 && buckets[index][k] > array[j]) { 
                            buckets[index][k + 1] = buckets[index][k];
                            k--;
         }
          buckets[index][k + 1] = array[j]; 
         } else { // 空 桶 , 初 始 化
             buckets[index] = []; 
             buckets[index].push(array[j]); 
         } 
         }
          while (n < num) {
            result = result.concat(buckets[n]);
            n++; 
        }
           console.timeEnd('桶排序耗时');
           return result; 
    }

 

10.基数排序:

     基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,
直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排
序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序
基于分别排序,分别收集,所以是稳定的。

   具体算法描述如下:
     <1>.取得数组中的最大数,并取得位数;
     <2>.arr为原始数组,从最低位开始取每个位组成radix数组;
     <3>.对radix进行计数排序(利用计数排序适用于小范围数的特点);

function radixSort(arr, maxDigit) { 
              var mod = 10; 
              var dev = 1;
              var counter = [];
              console.time('基数排序耗时');
              for (var i = 0;
              i < maxDigit;
              i++, dev *= 10, mod *= 10) {
                   for (var j = 0; j < arr.length; j++) {
                       var bucket = parseInt((arr[j] % mod) / dev); 
                          if (counter[bucket] == null) { 
                             counter[bucket] = [];
               } 
             counter[bucket].push(arr[j]); 
             }
              var pos = 0; for (var j = 0;
                j < counter.length; j++) {
                 var value = null; 
                 if (counter[j] != null) { 
                 while ((value = counter[j].shift()) != null) {
                    arr[pos++] = value; 
              }
            }
          }
      }
              console.timeEnd('基数排序耗时'); 
              return arr;
 }

 

posted @ 2020-06-07 16:42  清风园  阅读(228)  评论(0编辑  收藏  举报