pytorch将cpu训练好的模型参数load到gpu上,或者gpu->cpu上

假设我们只保存了模型的参数(model.state_dict())到文件名为modelparameters.pth, model = Net()

1. cpu -> cpu或者gpu -> gpu:

checkpoint = torch.load('modelparameters.pth')

model.load_state_dict(checkpoint)

2. cpu -> gpu 1

torch.load('modelparameters.pth', map_location=lambda storage, loc: storage.cuda(1))

3. gpu 1 -> gpu 0

torch.load('modelparameters.pth', map_location={'cuda:1':'cuda:0'})

4. gpu -> cpu

torch.load('modelparameters.pth', map_location=lambda storage, loc: storage)

 




 

 
posted @ 2018-07-14 23:47  琴影  阅读(9724)  评论(0编辑  收藏  举报