poj 3069 Saruman's Army

Saruman's Army
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7853   Accepted: 4012

Description

Saruman the White must lead his army along a straight path from Isengard to Helm’s Deep. To keep track of his forces, Saruman distributes seeing stones, known as palantirs, among the troops. Each palantir has a maximum effective range of R units, and must be carried by some troop in the army (i.e., palantirs are not allowed to “free float” in mid-air). Help Saruman take control of Middle Earth by determining the minimum number of palantirs needed for Saruman to ensure that each of his minions is within R units of some palantir.

Input

The input test file will contain multiple cases. Each test case begins with a single line containing an integer R, the maximum effective range of all palantirs (where 0 ≤ R ≤ 1000), and an integer n, the number of troops in Saruman’s army (where 1 ≤ n ≤ 1000). The next line contains n integers, indicating the positions x1, …, xn of each troop (where 0 ≤ xi ≤ 1000). The end-of-file is marked by a test case with R = n= −1.

Output

For each test case, print a single integer indicating the minimum number of palantirs needed.

Sample Input

0 3
10 20 20
10 7
70 30 1 7 15 20 50
-1 -1

Sample Output

2
4

Hint

In the first test case, Saruman may place a palantir at positions 10 and 20. Here, note that a single palantir with range 0 can cover both of the troops at position 20.

In the second test case, Saruman can place palantirs at position 7 (covering troops at 1, 7, and 15), position 20 (covering positions 20 and 30), position 50, and position 70. Here, note that palantirs must be distributed among troops and are not allowed to “free float.” Thus, Saruman cannot place a palantir at position 60 to cover the troops at positions 50 and 70.

大意:
给出一维直线上n个点的相应坐标,和一个参数——距离R,给n个点中尽可能少的点做标记,使得n个点中,任意一个点,在R距离内都有被标记的点。
 
思路:
首先从最左边开始考虑,显然,从左边起,标记的第一个点,在最左边点的右侧。且选择距离R内 距离其最远的点。
接着,把上一次标记的这个点  能影响的最右边的点  的下一个点,作为最左边的点,开始又一次标记。
 1 #include <iostream>
 2 #include <algorithm>
 3 #include <cstdio>
 4 using namespace std;
 5 const int MAX_N = 1000;
 6 
 7 int n, r;
 8 int s[MAX_N];
 9 
10 void solve(){
11     sort(s, s+n);
12     int i = 0, ans = 0;
13     while(i < n){
14         int st = s[i++];
15         while(s[i] <= st + r) i++;
16         int p = s[i-1];
17         while(s[i] <= p + r) i++;
18         ans++;
19     }
20     printf("%d\n", ans);
21 }
22 
23 int main(){
24     while(cin >> r >> n){
25         if(r == -1 && n == -1)
26             break;
27         for(int i = 0; i < n; i++){
28             cin >> s[i];
29         }
30         solve();
31     }
32     return 0;
33 }

 

posted @ 2016-08-23 21:18  琴影  阅读(158)  评论(0编辑  收藏  举报