hdu 2709 Sumsets

Sumsets

Time Limit: 6000/2000 MS (Java/Others)   

 Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2159    

Accepted Submission(s): 875

Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
 
Input
A single line with a single integer, N.
 
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
 
Sample Input
7
 
Sample Output
6
 

题目大意:

输入一个整数,将这个数分解成不定个正数之和,要求这些数必须是2的k次方(k为大于等于0的正数).输出分的方法种数.(由于当输出整数过大时,种数很大只输出最后9位)

 

思路一:

 

a[n]为和为 n 的种类数;
根据题目可知,加数为2的N次方,即 n 为奇数时等于它前一个数 n-1 的种类数 a[n-1] ,若 n 为偶数时分加数中有无 1 讨论,即关键是对 n 为偶数时进行讨论:
1.n为奇数,a[n]=a[n-1]
2.n为偶数:
(1)如果加数里含1,则一定至少有两个1,即对n-2的每一个加数式后面 +1+1,总类数为a[n-2]
(2)如果加数里没有1,即对n/2的每一个加数式乘以2,总类数为a[n/2]
所以总的种类数为:a[n]=a[n-2]+a[n/2];

 1 #include <iostream>
 2 using namespace std;
 3 long i,a[1000001];
 4 int main()
 5 {
 6         a[1] = 1;
 7         a[2] = 2;
 8     for(i = 3; i < 1000001; i++)
 9     {
10         if((i&1) == 1)
11         {
12             a[i] = a[i-1];    //i为奇数与它前一个数量相同
13         }
14         else
15         {
16             a[i] = (a[i-2] + a[i>>1]) % 1000000000;    //含有1: a[i-1]每种情况填11、不含1: a[i/2]每种情况*2
17         }
18     }
19     while(cin >> i){
20         cout << a[i] << endl;    
21         }
22     return 0;
23 
24 }
View Code

 

思路二:DP思想

假如只能用1构成那么每个数的分的方法种数就是1.

如果这个时候能用 2 构成,那么对于大于等于 2 的数 n 就可以由 n - 2 2 构成 就转化为 求 n - 2 的种数那么就是 d [ n ] = d [ n-2 ] + d [ n ] (前面 d [ n-2 ] 表示数n可以由2构成的种数,后面加的 d [ n ] 表示数n只能由 1 构成的种数.)

那么状态转移方程式子就出来了(c [ n ] = 2^n)

d [ n ] [ k ] = d [ n ] [ k - 1 ] + d [ n - c [ k ] ] [ k ] ;

循环降维:

d [ n ] = d [ n ] + d [ n - c [ k ] ] ;

 1 #include<iostream>
 2 #include<cstring>
 3 using namespace std;
 4 long d[1000005],c[25],n,i,j;  
 5 int main()  
 6 {  
 7     while(cin >> n) 
 8     {
 9         memset(d,0,sizeof(d));
10         c[0]=d[0]=1;  
11     for(i=1;i<=24;i++)  
12         c[i]=c[i-1]<<1;  
13     for(i=0;i<=24&&c[i]<=n;i++)  
14         for(j=c[i];j<=n;j++)  
15             d[j]=(d[j]+d[j-c[i]])%1000000000;  
16         cout << d[n] << endl;
17     }
18     return 0;
19 }  
View Code

 

posted @ 2016-05-13 18:57  琴影  阅读(278)  评论(0编辑  收藏  举报