4.1、模块和包的介绍

1.模块的介绍

定义:

Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句。

模块让你能够有逻辑地组织你的 Python 代码段。

把相关的代码分配到一个模块里能让你的代码更好用,更易懂。

模块能定义函数,类和变量,模块里也能包含可执行的代码。

 

2.time模块

1、常用方法:

1.time.sleep(secs) (线程)推迟指定的时间运行,单位为秒。

2.time.time() 获取当前时间戳。

2、在计算中时间共有三种方式:

1.时间戳: 通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型(计算机能够识别的时间)。

2.格式化字符串时间: 格式化的时间字符串(Format String): ‘1999-12-06’ (人能够看懂的时间)。

3.结构化时间:元组(struct_time) struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等(用来操作时间的)。

--------------------------我们先以当前时间为准--------------------------

#导入时间模块
>>>import time

#时间戳
>>>time.time()
1500875844.800804

#时间字符串
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
>>>time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04'

#时间元组:localtime将一个时间戳转换为当前时区的struct_time
time.localtime()
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24,
          tm_hour=13, tm_min=59, tm_sec=37, 
                 tm_wday=0, tm_yday=205, tm_isdst=0)

print(time.localtime()) #本地时区的struct_time
print(time.gmtime())    #UTC时区的struct_time
python中表示时间的几种格式
%y 两位数的年份表示(00-99%Y 四位数的年份表示(000-9999%m 月份(01-12%d 月内中的一天(0-31%H 24小时制小时数(0-23%I 12小时制小时数(01-12%M 分钟数(00=59%S 秒(00-59%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身
python中时间日期格式化符号

 

3、时间格式转换:

 

#时间戳-->结构化时间
#time.gmtime(时间戳)    #UTC时间,与英国伦敦当地时间一致
#time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 
>>>time.gmtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)
>>>time.localtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)



#结构化时间-->时间戳 
#time.mktime(结构化时间)
>>>time_tuple = time.localtime(1500000000)
>>>time.mktime(time_tuple)
1500000000.0



#结构化时间-->字符串时间
#time.strftime("格式定义","结构化时间")  结构化时间参数若不传,则显示当前时间
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 14:55:36'
>>>time.strftime("%Y-%m-%d",time.localtime(1500000000))
'2017-07-14'



#字符串时间-->结构化时间
#time.strptime(时间字符串,字符串对应格式)
>>>time.strptime("2017-03-16","%Y-%m-%d")
time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1)
>>>time.strptime("07/24/2017","%m/%d/%Y")
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)
时间格式转换

 

#结构化时间 --> %a %b %d %H:%M:%S %Y串
#time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
>>>time.asctime(time.localtime(1500000000))
'Fri Jul 14 10:40:00 2017'
>>>time.asctime()
'Mon Jul 24 15:18:33 2017'



#时间戳 --> %a %b %d %H:%M:%S %Y串
#time.ctime(时间戳)  如果不传参数,直接返回当前时间的格式化串
>>>time.ctime()
'Mon Jul 24 15:19:07 2017'
>>>time.ctime(1500000000)
'Fri Jul 14 10:40:00 2017'
时间格式转换。

 

4、计算时间差:

import time
true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))
time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))
dif_time=time_now-true_time
struct_time=time.gmtime(dif_time)
print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1,
                                       struct_time.tm_mday-1,struct_time.tm_hour,
                                       struct_time.tm_min,struct_time.tm_sec))
View Code

 

 

3.datetime模块

1.获取当前日期和时间

from datetime import datetime

print(datetime.now())

'''
结果:2018-12-04 21:07:48.734886
'''

##注意:datetime是模块,datetime模块还包含一个datetime的类,通过from datetime import datetime导入的才是datetime这个类。

如果仅导入import datetime,则必须引用全名datetime.datetime。

datetime.now()返回当前日期和时间,其类型是datetime。##
View Code

2.获取指定日期和时间。(要指定某个日期和时间,我们直接用参数构造一个datetime

from datetime import datetime

dt = datetime(2018,5,20,13,14)
print(dt)

'''
结果:2018-05-20 13:14:00
'''
View Code

3.datetime转换为timestamp(时间戳)

from datetime import datetime

dt = datetime.now()
new_timestamp = dt.timestamp()
print(new_timestamp)

'''
结果:1543931750.415896
'''
View Code

4.timestamp转换为datetime

import time
from datetime import datetime

new_timestamp = time.time()
print(datetime.fromtimestamp(new_timestamp))
View Code

5.str转换为datetime

很多时候,用户输入的日期和时间是字符串,要处理日期和时间,首先必须把str转换为datetime。转换方法是通过datetime.strptime()实现,需要一个日期和时间的格式化字符串:

from datetime import datetime

t = datetime.strptime('2018-4-1 00:00','%Y-%m-%d %H:%M')
print(t)
'''
结果: 2018-04-01 00:00:00
'''
View Code

6.datetime转换为str

如果已经有了datetime对象,要把它格式化为字符串显示给用户,就需要转换为str,转换方法是通过strftime()实现的,同样需要一个日期和时间的格式化字符串:

from datetime import datetime
now = datetime.now()
print(now.strftime('%a, %b %d %H:%M'))
Mon, May 05 16:28
View Code

7.datetime加减(对日期和时间进行加减实际上就是把datetime往后或往前计算,得到新的datetime。加减可以直接用+-运算符,不过需要导入timedelta这个类:)

from datetime import datetime, timedelta
now = datetime.now()
now
datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
now + timedelta(hours=10)
datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
now - timedelta(days=1)
datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
now + timedelta(days=2, hours=12)
datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)
View Code

8.小结: 

datetime表示的时间需要时区信息才能确定一个特定的时间,否则只能视为本地时间。

如果要存储datetime,最佳方法是将其转换为timestamp再存储,因为timestamp的值与时区完全无关。

 

4.random模块

 1.random模块的方法

>>> import random
#随机小数
>>> random.random()      # 大于0且小于1之间的小数
0.7664338663654585
>>> random.uniform(1,3) #大于1小于3的小数
1.6270147180533838#随机整数
>>> random.randint(1,5)  # 大于等于1且小于等于5之间的整数
>>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数
​
​
#随机选择一个返回
>>> random.choice([1,'23',[4,5]])  # #1或者23或者[4,5]
#随机选择多个返回,返回的个数为函数的第二个参数
>>> random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合
[[4, 5], '23']
​
​
#打乱列表顺序
>>> item=[1,3,5,7,9]
>>> random.shuffle(item) # 打乱次序
>>> item
[5, 1, 3, 7, 9]
>>> random.shuffle(item)
>>> item
[5, 9, 7, 1, 3]
random模块的方法

 2、生成随机验证码

import random
​
def v_code():
​
    code = ''
    for i in range(5):
​
        num=random.randint(0,9)
        alf=chr(random.randint(65,90))
        add=random.choice([num,alf])
        code="".join([code,str(add)])
​
    return code
​
print(v_code())
生成随机验证码

 

 

5.os模块 

1、介绍:os模块是与操作系统交互的一个接口。(http://www.runoob.com/python/os-file-methods.html

当前执行这个python文件的工作目录相关的工作路径
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
os.curdir  返回当前目录: ('.')
os.pardir  获取当前目录的父目录字符串名:('..')
​
#和文件夹相关
os.makedirs('dirname1/dirname2')    可生成多层递归目录
os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
​
# 和文件相关
os.remove()  删除一个文件
os.rename("oldname","newname")  重命名文件/目录
os.stat('path/filename')  获取文件/目录信息
​
# 和操作系统差异相关
os.sep    输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep    输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'# 和执行系统命令相关
os.system("bash command")  运行shell命令,直接显示
os.popen("bash command).read()  运行shell命令,获取执行结果
os.environ  获取系统环境变量
​
#path系列,和路径相关
os.path.abspath(path) 返回path规范化的绝对路径
os.path.split(path) 将path分割成目录和文件名二元组返回
os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素
os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值,即os.path.split(path)的第二个元素。
os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path)  如果path是绝对路径,返回True
os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path)  返回path所指向的文件或者目录的最后访问时间
os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间
os.path.getsize(path) 返回path的大小
os模块方法

2、os.stat('path/filename') 获取文件/目录信息 的结构说明

stat 结构:
st_mode: inode 保护模式
st_ino: inode 节点号。
st_dev: inode 驻留的设备。
st_nlink: inode 的链接数。
st_uid: 所有者的用户ID。
st_gid: 所有者的组ID。
st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。
st_atime: 上次访问的时间。
st_mtime: 最后一次修改的时间。
st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。
View Code

3、os路径处理

#方式一:推荐使用
import os
#具体应用
import os,sys
possible_topdir = os.path.normpath(os.path.join(
    os.path.abspath(__file__),
    os.pardir, #上一级
    os.pardir,
    os.pardir
))
sys.path.insert(0,possible_topdir)


#方式二:不推荐使用
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
View Code
在Linux和Mac平台上,该函数会原样返回path,在windows平台上会将路径中所有字符转换为小写,并将所有斜杠转换为饭斜杠。
>>> os.path.normcase('c:/windows\\system32\\')   
'c:\\windows\\system32\\'   
   

规范化路径,如..和/
>>> os.path.normpath('c://windows\\System32\\../Temp/')   
'c:\\windows\\Temp'   

>>> a='/Users/jieli/test1/\\\a1/\\\\aa.py/../..'
>>> print(os.path.normpath(a))
/Users/jieli/test1
View Code

 

6.sys模块

 

 1、介绍:sys模块是与python解释器交互的一个接口

1 sys.argv           实现从程序外部向程序传递参数。(在命令行里面输打开路径执行)

name=sys.argv[1] #命令行参数List,第一个元素是程序的本身路径
  password = sys.argv[2]
  if name=='egon' and password == '123':
     print('继续执行程序')
 else:
     exit()

2 sys.exit(n)        退出程序,正常退出时exit(0)
3 sys.version        获取Python解释程序的版本信息
4 sys.maxint         最大的Int值 ,最大能表示的数,与系统多少位有关
5 sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
6 sys.platform       返回操作系统平台名称

#=========知识储备==========
#进度条的效果
[#             ]
[##            ]
[###           ]
[####          ]
#指定宽度
print('[%-15s]' %'#')
print('[%-15s]' %'##')
print('[%-15s]' %'###')
print('[%-15s]' %'####')
​
#打印%
print('%s%%' %(100)) #第二个%号代表取消第一个%的特殊意义
#可传参来控制宽度
print('[%%-%ds]' %50) #[%-50s]
print(('[%%-%ds]' %50) %'#')
print(('[%%-%ds]' %50) %'##')
print(('[%%-%ds]' %50) %'###')
​
​
#=========实现打印进度条函数==========
import sys
import time
​
def progress(percent,width=50):
    if percent >= 1:
        percent=1
    show_str = ('%%-%ds' % width) % (int(width*percent)*'|')
    print('\r%s %d%%' %(show_str, int(100*percent)), end='')
​
​
#=========应用==========
data_size=1025
recv_size=0
while recv_size < data_size:
    time.sleep(0.1) #模拟数据的传输延迟
    recv_size+=1024 #每次收1024
​
    percent=recv_size/data_size #接收的比例
    progress(percent,width=70) #进度条的宽度70
打印进度条

  

7.shutil模块

1、介绍:shutil模块是对高级的文件、文件夹、压缩包 处理的模块。

1.shutil.copyfileobj(fsrc, fdst[, length]) 将文件内容拷贝到另一个文件中

import shutil  
shutil.copyfileobj(open('old.xml','r'), open('new.xml', 'w'))

2.shutil.copyfile(src, dst) 拷贝文件

shutil.copyfile('f1.log', 'f2.log') #目标文件无需存在

3.shutil.copymode(src, dst) 仅拷贝权限。内容、组、用户均不变

shutil.copymode('f1.log', 'f2.log') #目标文件必须存在

4.shutil.copystat(src, dst) 仅拷贝状态的信息,包括:mode bits, atime, mtime, flags

shutil.copystat('f1.log', 'f2.log') #目标文件必须存在

5.shutil.copy(src, dst) 拷贝文件和权限

import shutil
shutil.copy('f1.log', 'f2.log')
shutil.copy2(src, dst)

6.拷贝文件和状态信息

import shutil
shutil.copy2('f1.log', 'f2.log')
shutil.ignore_patterns(*patterns)
shutil.copytree(src, dst, symlinks=False, ignore=None)

7.递归的去拷贝文件夹

import shutil
shutil.copytree('folder1', 'folder2', ignore=shutil.ignore_patterns('*.pyc', 'tmp*')) #目标目录不能存在,注意对folder2目录父级目录要有可写权限,ignore的意思是排除

8.拷贝软连接

import shutil
shutil.copytree('f1', 'f2', symlinks=True, ignore=shutil.ignore_patterns('*.pyc', 'tmp*'))
​
'''
通常的拷贝都把软连接拷贝成硬链接,即对待软连接来说,创建新的文件
'''

9.shutil.rmtree(path[, ignore_errors[, onerror]]) 递归的去删除文件

import shutil
shutil.rmtree('folder1')
shutil.move(src, dst)

10. 递归的去移动文件,它类似mv命令,其实就是重命名。

import shutil
shutil.move('folder1', 'folder3')
shutil.make_archive(base_name, format,...)

11.创建压缩包并返回文件路径,例如:zip、tar

base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,
如 data_bak                       =>保存至当前路径
如:/tmp/data_bak =>保存至/tmp/
format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
root_dir:   要压缩的文件夹路径(默认当前目录)
owner:  用户,默认当前用户
group:  组,默认当前组
logger: 用于记录日志,通常是logging.Logger对象
​
#将 /data 下的文件打包放置当前程序目录
import shutil
ret = shutil.make_archive("data_bak", 'gztar', root_dir='/data')
   
   
#将 /data下的文件打包放置 /tmp/目录
import shutil
ret = shutil.make_archive("/tmp/data_bak", 'gztar', root_dir='/data')
View Code

12.shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细: zipfile压缩解压缩

import zipfile
 
# 压缩
z = zipfile.ZipFile('laxi.zip', 'w')
z.write('a.log')
z.write('data.data')
z.close()
 
# 解压
z = zipfile.ZipFile('laxi.zip', 'r')
z.extractall(path='.')
z.close()
View Code

13.tarfile压缩解压缩

import tarfile
​
# 压缩
>>> t=tarfile.open('/tmp/egon.tar','w')
>>> t.add('/test1/a.py',arcname='a.bak')
>>> t.add('/test1/b.py',arcname='b.bak')
>>> t.close()
​
​
# 解压
>>> t=tarfile.open('/tmp/egon.tar','r')
>>> t.extractall('/egon')
>>> t.close()
View Code

14、shutil.make_archive(base_name, format,...)

创建压缩包并返回文件路径,例如:zip、tar

创建压缩包并返回文件路径,例如:zip、tar

    • base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,
      如 data_bak                       =>保存至当前路径
      如:/tmp/data_bak =>保存至/tmp/
    • format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
    • root_dir: 要压缩的文件夹路径(默认当前目录)
    • owner: 用户,默认当前用户
    • group: 组,默认当前组
    • logger: 用于记录日志,通常是logging.Logger对象
#将 /data 下的文件打包放置当前程序目录
import shutil
ret = shutil.make_archive("data_bak", 'gztar', root_dir='/data')
  
  
#将 /data下的文件打包放置 /tmp/目录
import shutil
ret = shutil.make_archive("/tmp/data_bak", 'gztar', root_dir='/data')

 

 

8.序列化

1、定义:将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给? 现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。 但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。 你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢? 没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串, 但是你要怎么把一个字符串转换成字典呢? 聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。 eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。 BUT!强大的函数有代价。安全性是其最大的缺点。 想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。 而使用eval就要担这个风险。 所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)
为什么要有序列化模块

2、序列化的目的

1、以某种存储形式使自定义对象持久化;
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。

 

 

9. json模块

1介绍如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。通过Python的json模块,可以将字符串形式的json数据转化为字典,也可以将Python中的字典数据转化为字符串形式的json数据。

python序列化为json时的数据类型转换关系与json反序列化为python数据类型对照关系

                

 

2、Json模块提供的四个功能:dumps、dump、loads、load

json.dumps(): 将字典序列化为json字符串

json.loads(): 将json字符串反序列化为字典

json.dump(): 将字典序列化到一个文件,是文本文件,就是相当于将序列化后的json字符串写入到一个文件

json.load(): 从文件中反序列出字典

总结: 不带s的是序列到文件或者从文件中反序列化,带s的是都在内存中操作不涉及到持久化
json的四个功能

dumps 及 loads

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic)  #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic)  #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的
​
dic2 = json.loads(str_dic)  #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2)  #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}
​
​
list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
dumps 及 loads

dump 及 load

import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f)  #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close()
​
f = open('json_file')
dic2 = json.load(f)  #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2) 
dump 及 load

 

3、json字符串转为字典(json.load / json.loads)

两个方法功能类似,可选参数也相同,最大的区别在于,json.load方法接受的输入,即第一个参数,是包含json数据的文件对象,如open方法的返回对象,

json.loads接受的输入是json字符串,而非文件对象。从输入类型的区别也可以看出两者的使用场合。

字典转换为json(json.dump / json.dumps)

对应于load和loads,dump的第一个参数是对象字典,第二个参数是文件对象,可以直接将转换后的json数据写入文件,dumps的第一个参数是对象字典,其余都是可选参数。dump和dumps的可选参数相同,这些参数都相当实用,现将用到的参数记录如下:

ensure_ascii 默认为True,保证转换后的json字符串中全部是ascii字符,非ascii字符都会被转义。如果数据中存在中文或其他非ascii字符,最好将ensure_ascii设置为False,保证输出结果正常。

indent 缩进,默认为None,没有缩进,设置为正整数时,输出的格式将按照indent指定的半角空格数缩进,相当实用。

separators 设置分隔符,默认的分隔符是(',', ': '),如果需要自定义json中的分隔符,例如调整冒号前后的空格数,可以按照(item_separator, key_separator)的形式设置。

sort_keys 默认为False,设为True时,输出结果将按照字典中的key排序。

>>> import json
>>> a = {}
>>> a['1'] = 2
>>> a['ad'] = 'ertwer'
>>> a['02'] = 'oierte'
>>> a[2] = [1, 'a']
>>> a['non_ascii'] = "青团 》 熊猫 ?"
>>> a['ss'] = a.copy()
>>> print(json.dumps(a))  # 默认参数输出,无缩进,中文字符都被转义
{"2": [1, "a"], "02": "oierte", "ss": {"ad": "ertwer", "2": [1, "a"], "02": "oierte", "1": 2, "non_ascii": "\u9752\u56e2 \u300b \u718a\u732b \uff1f"}, "1": 2, "ad": "ertwer", "non_ascii": "\u9752\u56e2 \u300b \u718a\u732b \uff1f"}
>>> 
>>> print(json.dumps(a, ensure_ascii=False, indent=4))  # 四空格缩进,中文字符全部正常
{
    "2": [
        1,
        "a"
    ],
    "02": "oierte",
    "ss": {
        "ad": "ertwer",
        "2": [
            1,
            "a"
        ],
        "02": "oierte",
        "1": 2,
        "non_ascii": "青团 》 熊猫 ?"
    },
    "1": 2,
    "ad": "ertwer",
    "non_ascii": "青团 》 熊猫 ?"
}
>>>
View Code

4、其它参数

Serialize obj to a JSON formatted str.(字符串表示的json对象) 
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key 
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。) 
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse). 
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity). 
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json 
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。 
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. 
sort_keys:将数据根据keys的值进行排序。 
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.
View Code

5、json格式化输出:

import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)
View Code

6、py对象序列化为json的时候会接受的几个参数:

indent: 即缩进量是几个空格,当需要格式化输出的时候一般设为4个空格

if __name__ == '__main__':
    cc = {
        "name": "CC11001100",
        "age": 22,
        "money": 9.9,
        "car": "Feng-Huang Bicycle",
        "house": "祖宅",
        "girl friend": None,
        "hobby": "thinking..."
    }
    print(json.dumps(cc, indent=4))

输出结果:
{
    "name": "CC11001100",
    "age": 22,
    "money": 9.9,
    "car": "Feng-Huang Bicycle",
    "house": "\u7956\u5b85",
    "girl friend": null,
    "hobby": "thinking..."
}
View Code

separators: 生成的json子串所使用的分隔符,就是用来代替分隔多个k/v对的,和分隔k/v的:

if __name__ == '__main__':
    cc = {
        "name": "CC11001100",
        "age": 22,
        "money": 9.9,
        "car": "Feng-Huang Bicycle",
        "house": "祖宅",
        "girl friend": None,
        "hobby": "thinking..."
    }
    print(json.dumps(cc, indent=4, separators=('', '')))

输出结果:
  {
    "name""CC11001100""age"→22"money"→9.9"car""Feng-Huang Bicycle""house""\u7956\u5b85""girl friend"→null↓
    "hobby""thinking..."
}
View Code

 

7、总结:

1. json序列化方法:

          dumps:无文件操作            dump:序列化+写入文件

  2. json反序列化方法:

          loads:无文件操作              load: 读文件+反序列化

  3. json模块序列化的数据 更通用

      picle模块序列化的数据 仅python可用,但功能强大,可以序列号函数

  4. json模块可以序列化和反序列化的  数据类型 见  python对象(obj) 与json对象的对应关系表

  5. 格式化写入文件利用  indent = 4 

 

10.pickle模块

1、介绍:pickle,用于python特有的类型 和 python的数据类型间进行转换 。

2、pickle模块的四个功能:

dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)pickle是python特有的模块.

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic)  #一串二进制内容
​
dic2 = pickle.loads(str_dic)
print(dic2)    #字典
import time
struct_time  = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close()
​
f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)
View Code

python对象(obj) 与json对象的对应关系:

 

 3、小结:

json模块里的dumps是将python的数据结构转换成字符串,loads是将字符串类型转换成python的数据结构

json模块里的dump是将python的数据结构转换成字符串,然后存入到文件当中

json模块里的load是将文件中字符串类型转换成python的数据结构

pickle模块里的dumps是将python的数据结构转换成二进制的文件,loads是将二进制的文件转换成python的数据结构
pickle模块里的dump是将python的数据结构转换成二进制然后存入到文件中
pickle模块里的load是将文件中的二进制文件转成python的数据结构 
 
 

11.shelve模块

1、介绍:Shelve是对象持久化保存方法,将对象保存到文件里面,缺省(即默认)的数据存储文件是二进制的。shelve也是python提供给我们的序列化工具,只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。可以作为一个简单的数据存储方案。

import shelve

f=shelve.open(r'sheve.txt')
# f['stu1_info']={'name':'egon','age':18,'hobby':['piao','smoking','drinking']}
# f['stu2_info']={'name':'gangdan','age':53}
# f['school_info']={'website':'http://www.pypy.org','city':'beijing'}

print(f['stu1_info']['hobby'])
f.close()
View Code

2、实例:

# 保存数据
with shelve.open('student') as db:
    db['name'] = 'Tom'
    db['age'] = 19
    db['hobby'] = ['篮球', '看电影', '弹吉他']
    db['other_info'] = {'sno': 1, 'addr': 'xxxx'}

# 读取数据
with shelve.open('student') as db:
    for key,value in db.items():
        print(key, ': ', value)

#输出结果:

name :  Tom
age :  19
hobby :  ['篮球', '看电影', '弹吉他']
other_info :  {'sno': 1, 'addr': 'xxxx'}
内置数据类型操作
# 自定义class
class Student(object):
    def __init__(self, name, age, sno):
        self.name = name
        self.age = age
        self.sno = sno
    
    def __repr__(self):
        return 'Student [name: %s, age: %d, sno: %d]' % (self.name, self.age, self.sno)

# 保存数据
tom = Student('Tom', 19, 1)
jerry = Student('Jerry', 17, 2)

with shelve.open("stu.db") as db:
    db['Tom'] = tom
    db['Jerry'] = jerry

# 读取数据
with shelve.open("stu.db") as db:
    print(db['Tom'])
    print(db['Jerry'])

输出结果:

Student [name: Tom, age: 19, sno: 1]
Student [name: Jerry, age: 17, sno: 2]
自定义数据类型操作

 

三个序列化模块的总结:

1. 对比

json模块常用于编写web接口,将Python数据转换为通用的json格式传递给其它系统或客户端;也可以用于将Python数据保存到本地文件中,缺点是明文保存,保密性差。另外,如果需要保存非内置数据类型需要编写额外的转换函数或自定义类。

pickle模块和shelve模块由于使用其特有的序列化协议,其序列化之后的数据只能被Python识别,因此只能用于Python系统内部。另外,Python 2.x 和 Python
3.x 默认使用的序列化协议也不同,如果需要互相兼容需要在序列化时通过protocol参数指定协议版本。除了上面这些缺点外,pickle模块和shelve模块相对于json模块的优点在于对于自定义数据类型可以直接序列化和反序列化,不需要编写额外的转换函数或类。

shelve模块可以看做是pickle模块的升级版,因为shelve使用的就是pickle的序列化协议,但是shelve比pickle提供的操作方式更加简单、方便。shelve模块相对于其它两个模块在将Python数据持久化到本地磁盘时有一个很明显的优点就是,它允许我们可以像操作dict一样操作被序列化的数据,而不必一次性的保存或读取所有数据。

2. 建议

    • 需要与外部系统交互时用json模块;
    • 需要将少量、简单Python数据持久化到本地磁盘文件时可以考虑用pickle模块;
    • 需要将大量Python数据持久化到本地磁盘文件或需要一些简单的类似数据库的增删改查功能时,可以考虑用shelve模块。

 

 

12.xml模块

1、介绍:xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单。

xml的格式如下,就是通过<>节点来区别数据结构的:

<?xml version="1.0"?>
<data>
    <country name="Liechtenstein">
        <rank updated="yes">2</rank>
        <year>2008</year>
        <gdppc>141100</gdppc>
        <neighbor name="Austria" direction="E"/>
        <neighbor name="Switzerland" direction="W"/>
    </country>
    <country name="Singapore">
        <rank updated="yes">5</rank>
        <year>2011</year>
        <gdppc>59900</gdppc>
        <neighbor name="Malaysia" direction="N"/>
    </country>
    <country name="Panama">
        <rank updated="yes">69</rank>
        <year>2011</year>
        <gdppc>13600</gdppc>
        <neighbor name="Costa Rica" direction="W"/>
        <neighbor name="Colombia" direction="E"/>
    </country>
</data>
View Code

xml协议在各个语言里的都 是支持的,在python中可以用以下模块操作xml:

# print(root.iter('year')) #全文搜索
# print(root.find('country')) #在root的子节点找,只找一个
# print(root.findall('country')) #在root的子节点找,找所有

2、xml的几个方法:

import xml.etree.ElementTree as ET
 
tree = ET.parse("xmltest.xml")
root = tree.getroot()
print(root.tag)
 
#遍历xml文档
for child in root:
    print('========>',child.tag,child.attrib,child.attrib['name'])
    for i in child:
        print(i.tag,i.attrib,i.text)
 
#只遍历year 节点
for node in root.iter('year'):
    print(node.tag,node.text)
#---------------------------------------

import xml.etree.ElementTree as ET
 
tree = ET.parse("xmltest.xml")
root = tree.getroot()
 
#修改
for node in root.iter('year'):
    new_year=int(node.text)+1
    node.text=str(new_year)
    node.set('updated','yes')
    node.set('version','1.0')
tree.write('test.xml')
 
 
#删除node
for country in root.findall('country'):
   rank = int(country.find('rank').text)
   if rank > 50:
     root.remove(country)
 
tree.write('output.xml')


#在country内添加(append)节点year2
import xml.etree.ElementTree as ET
tree = ET.parse("a.xml")
root=tree.getroot()
for country in root.findall('country'):
    for year in country.findall('year'):
        if int(year.text) > 2000:
            year2=ET.Element('year2')
            year2.text='新年'
            year2.attrib={'update':'yes'}
            country.append(year2) #往country节点下添加子节点

tree.write('a.xml.swap')
View Code

3、xml文档的创建:

import xml.etree.ElementTree as ET
 
 
new_xml = ET.Element("namelist")
name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"})
age = ET.SubElement(name,"age",attrib={"checked":"no"})
sex = ET.SubElement(name,"sex")
sex.text = '33'
name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"})
age = ET.SubElement(name2,"age")
age.text = '19'
 
et = ET.ElementTree(new_xml) #生成文档对象
et.write("test.xml", encoding="utf-8",xml_declaration=True)
 
ET.dump(new_xml) #打印生成的格式
View Code

 

 

13.configparser模块

1、介绍:该模块适用于配置文件的格式与windows  ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数(键=值)

创建:

import configparser
  
config = configparser.ConfigParser()
config["DEFAULT"] = {'ServerAliveInterval': '45',
                      'Compression': 'yes',
                     'CompressionLevel': '9'}
  
config['bitbucket.org'] = {}
config['bitbucket.org']['User'] = 'hg'
config['topsecret.server.com'] = {}
topsecret = config['topsecret.server.com']
topsecret['Host Port'] = '50022'     # mutates the parser
topsecret['ForwardX11'] = 'no'  # same here
config['DEFAULT']['ForwardX11'] = 'yes'
with open('example.ini', 'w') as configfile:
   config.write(configfile)
View Code

读取:

import configparser

config=configparser.ConfigParser()
config.read('a.cfg')

#查看所有的标题
res=config.sections() #['section1', 'section2']
print(res)

#查看标题section1下所有key=value的key
options=config.options('section1')
print(options) #['k1', 'k2', 'user', 'age', 'is_admin', 'salary']

#查看标题section1下所有key=value的(key,value)格式
item_list=config.items('section1')
print(item_list) #[('k1', 'v1'), ('k2', 'v2'), ('user', 'egon'), ('age', '18'), ('is_admin', 'true'), ('salary', '31')]

#查看标题section1下user的值=>字符串格式
val=config.get('section1','user')
print(val) #egon

#查看标题section1下age的值=>整数格式
val1=config.getint('section1','age')
print(val1) #18

#查看标题section1下is_admin的值=>布尔值格式
val2=config.getboolean('section1','is_admin')
print(val2) #True

#查看标题section1下salary的值=>浮点型格式
val3=config.getfloat('section1','salary')
print(val3) #31.0
View Code

改写

import configparser

config=configparser.ConfigParser()
config.read('a.cfg',encoding='utf-8')


#删除整个标题section2
config.remove_section('section2')

#删除标题section1下的某个k1和k2
config.remove_option('section1','k1')
config.remove_option('section1','k2')

#判断是否存在某个标题
print(config.has_section('section1'))

#判断标题section1下是否有user
print(config.has_option('section1',''))


#添加一个标题
config.add_section('egon')

#在标题egon下添加name=egon,age=18的配置
config.set('egon','name','egon')
config.set('egon','age',18) #报错,必须是字符串


#最后将修改的内容写入文件,完成最终的修改
config.write(open('a.cfg','w'))
View Code

 

14.hashlib加密模块详

1.介绍

算法介绍 Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。

什么是摘要算法呢?摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。

摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过。

摘要算法之所以能指出数据是否被篡改过,就是因为摘要函数是一个单向函数,计算f(data)很容易,但通过digest反推data却非常困难。而且,对原始数据做一个bit的修改,都会导致计算出的摘要完全不同。

我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值:
import hashlib
  
md5 = hashlib.md5()
md5.update('how to use md5 in python hashlib?')
print md5.hexdigest()
​
# 计算结果如下:
d26a53750bc40b38b65a520292f69306


如果数据量很大,可以分块多次调用update(),最后计算的结果是一样的:

import hashlib
md5 = hashlib.md5()
md5.update('how to use md5 in ')
md5.update('python hashlib?')
print(md5.hexdigest())

MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示。另一种常见的摘要算法是SHA1,调用SHA1和调用MD5完全类似:
import hashlib
sha1 = hashlib.sha1()
sha1.update('how to use sha1 in ')
sha1.update('python hashlib?')
print(sha1.hexdigest())

SHA1的结果是160 bit字节,通常用一个40位的16进制字符串表示。比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法越慢,而且摘要长度更长。

摘要算法应用 任何允许用户登录的网站都会存储用户登录的用户名和口令。如何存储用户名和口令呢?方法是存到数据库表中:
name    | password
--------+----------
michael | 123456
bob     | abc999
alice   | alice2008

如果以明文保存用户口令,如果数据库泄露,所有用户的口令就落入黑客的手里。此外,网站运维人员是可以访问数据库的,也就是能获取到所有用户的口令。正确的保存口令的方式是不存储用户的明文口令,而是存储用户口令的摘要,比如MD5:

username | password
---------+---------------------------------
michael  | e10adc3949ba59abbe56e057f20f883e
bob      | 878ef96e86145580c38c87f0410ad153
alice    | 99b1c2188db85afee403b1536010c2c9

考虑这么个情况,很多用户喜欢用123456,888888,password这些简单的口令,于是,黑客可以事先计算出这些常用口令的MD5值,得到一个反推表:

'e10adc3949ba59abbe56e057f20f883e': '123456'
'21218cca77804d2ba1922c33e0151105': '888888'
'5f4dcc3b5aa765d61d8327deb882cf99': 'password'
这样,无需破解,只需要对比数据库的MD5,黑客就获得了使用常用口令的用户账号。

对于用户来讲,当然不要使用过于简单的口令。但是,我们能否在程序设计上对简单口令加强保护呢?

由于常用口令的MD5值很容易被计算出来,所以,要确保存储的用户口令不是那些已经被计算出来的常用口令的MD5,这一方法通过对原始口令加一个复杂字符串来实现,俗称“加盐”:hashlib.md5("salt".encode("utf8"))

经过Salt处理的MD5口令,只要Salt不被黑客知道,即使用户输入简单口令,也很难通过MD5反推明文口令。

但是如果有两个用户都使用了相同的简单口令比如123456,在数据库中,将存储两条相同的MD5值,这说明这两个用户的口令是一样的。有没有办法让使用相同口令的用户存储不同的MD5呢?

如果假定用户无法修改登录名,就可以通过把登录名作为Salt的一部分来计算MD5,从而实现相同口令的用户也存储不同的MD5。

摘要算法在很多地方都有广泛的应用。要注意摘要算法不是加密算法,不能用于加密(因为无法通过摘要反推明文),只能用于防篡改,但是它的单向计算特性决定了可以在不存储明文口令的情况下验证用户口令。
View Code

 2.检验文件变了没有

import hashlib
md5_obj = hashlib.md5()
import os
filesize = os.path.getsize('filename')  #文件大小
f = open('filename','rb')
while filesize>0:
    if filesize > 1024:
        content = f.read(1024)
        filesize -= 1024
    else:
        content = f.read(filesize)
        filesize -= filesize
    md5_obj.update(content)
# for line in f:
#     md5_obj.update(line.encode('utf-8'))
md5_obj.hexdigest()
View Code

3.用户密码

import hashlib
# md5_obj = hashlib.md5()  未加盐
md5_obj = hashlib.md5('nezha'.encode('utf-8')) #加盐后(就让你的密码更牢固了)
md5_obj.update('123456'.encode('utf-8'))
print(md5_obj.hexdigest())
md5_obj.update('hello'.encode('utf-8'))
print(md5_obj.hexdigest())
# -----------
user = 'haiyan'
password = '123456'
md5_obj= hashlib.md5(user.encode('utf-8'))  #加盐(哪怕被人的密码和你的密码一样,
# 那你加盐以后就只有你的用户名对应的是你的密码了)
md5_obj.update(password.encode('utf-8'))
print(md5_obj.hexdigest())
View Code

4.模拟撞库破解密码

import hashlib
passwds=[
    'alex3714',
    'alex1313',
    'alex94139413',
    'alex123456',
    '123456alex',
    'a123lex',
    ]
def make_passwd_dic(passwds):
    dic={}
    for passwd in passwds:
        m=hashlib.md5()
        m.update(passwd.encode('utf-8'))
        dic[passwd]=m.hexdigest()
    return dic

def break_code(cryptograph,passwd_dic):
    for k,v in passwd_dic.items():
        if v == cryptograph:
            print('密码是===>\033[46m%s\033[0m' %k)

cryptograph='aee949757a2e698417463d47acac93df'
break_code(cryptograph,make_passwd_dic(passwds))
View Code

5.注意:

#要想保证hmac最终结果一致,必须保证:
#1:hmac.new括号内指定的初始key一样
#2:无论update多少次,校验的内容累加到一起是一样的内容

import hmac

h1=hmac.new(b'egon')
h1.update(b'hello')
h1.update(b'world')
print(h1.hexdigest())

h2=hmac.new(b'egon')
h2.update(b'helloworld')
print(h2.hexdigest())

h3=hmac.new(b'egonhelloworld')
print(h3.hexdigest())

'''
f1bf38d054691688f89dcd34ac3c27f2
f1bf38d054691688f89dcd34ac3c27f2
bcca84edd9eeb86f30539922b28f3981
'''
View Code

 

15.collections模块

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

namedtuple

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])
    

deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

OrderedDict
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict:
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

defaultdict
有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。
即: {'k1': 大于66 , 'k2': 小于66}

li = [11,22,33,44,55,77,88,99,90]
result = {}
for row in li:
    if row > 66:
        if 'key1' not in result:
            result['key1'] = []
        result['key1'].append(row)
    else:
        if 'key2' not in result:
            result['key2'] = []
        result['key2'].append(row)
print(result)
from collections import defaultdict
​
values = [11, 22, 33,44,55,66,77,88,99,90]
​
my_dict = defaultdict(list)
​
for value in  values:
    if value>66:
        my_dict['k1'].append(value)
    else:
        my_dict['k2'].append(value)


使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'


Counter
Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
collections模块

 hmac 模块  它内部对我们创建 key 和 内容 进行进一步的处理然后再加密:

1 import hmac

2 h = hmac.new('alvin'.encode('utf8'))

3 h.update('hello'.encode('utf8'))

4 print (h.hexdigest())#320df9832eab4c038b6c1d7ed73a5940

 

16.subprocess模块

 

 

 

17.logging模块

1.介绍:日志是一种可以追踪某些软件运行时所发生事件的方法。软件开发人员可以向他们的代码中调用日志记录相关的方法来表明发生了某些事情。一个事件可以用一个可包含可选变量数据的消息来描述。此外,事件也有重要性的概念,这个重要性也可以被称为严重性级别(level)。作用:

  • 程序调试
  • 了解软件程序运行情况,是否正常
  • 软件程序运行故障分析与问题定位

2.日志级别:默认情况下Python的logging模块将日志打印到了标准输出中,且只显示了大于等于WARNING级别的日志,这说明默认的日志级别设置为WARNING(日志级别等级CRITICAL > ERROR > WARNING > INFO > DEBUG),默认的日志格式为日志级别:Logger名称:用户输出消息。

logging.debug('调试debug')  >>>> 最详细的日志信息,典型应用场景是问题诊断
logging.info('消息info')    >>>>  信息详细程度仅次于DEBUG,通常只记录关键节点信息,用于确认一切都是按照我们预期的那样进行工作
logging.warning('警告warn')  >>>>当某些不期望的事情发生时记录的信息(如,磁盘可用空间较低),但是此时应用程序还是正常运行的
logging.error('错误error')   >>>> 由于一个更严重的问题导致某些功能不能正常运行时记录的信息
logging.critical('严重critical')   >>>>当发生严重错误,导致应用程序不能继续运行时记录的信息

 3.logging模块的使用方式介绍

logging模块提供了两种记录日志的方式:

  • 第一种方式是使用logging提供的模块级别的函数
  • 第二种方式是使用Logging日志系统的四大组件

其实,logging所提供的模块级别的日志记录函数也是对logging日志系统相关类的封装而已。

logging模块定义的模块级别的常用函数

函数说明
logging.debug(msg, *args, **kwargs) 创建一条严重级别为DEBUG的日志记录
logging.info(msg, *args, **kwargs) 创建一条严重级别为INFO的日志记录
logging.warning(msg, *args, **kwargs) 创建一条严重级别为WARNING的日志记录
logging.error(msg, *args, **kwargs) 创建一条严重级别为ERROR的日志记录
logging.critical(msg, *args, **kwargs) 创建一条严重级别为CRITICAL的日志记录
logging.log(level, *args, **kwargs) 创建一条严重级别为level的日志记录
logging.basicConfig(**kwargs) 对root logger进行一次性配置

其中logging.basicConfig(**kwargs)函数用于指定“要记录的日志级别”、“日志格式”、“日志输出位置”、“日志文件的打开模式”等信息,其他几个都是用于记录各个级别日志的函数。

 

logging模块的四大组件

组件说明
loggers 提供应用程序代码直接使用的接口
handlers 用于将日志记录发送到指定的目的位置
filters 提供更细粒度的日志过滤功能,用于决定哪些日志记录将会被输出(其它的日志记录将会被忽略)
formatters 用于控制日志信息的最终输出格式

说明: logging模块提供的模块级别的那些函数实际上也是通过这几个组件的相关实现类来记录日志的,只是在创建这些类的实例时设置了一些默认值。

 4.日志的基本配置(即logging提供的模块级别的函数的设置)

可通过logging.basicConfig(**kwargs)函数的具体参数来更改logging模块的基本配置,基本参数有

filename:用指定的文件名创建FiledHandler,这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。该选项要在filename指定时才有效
format:指定handler使用的日志显示格式。即指定日志输出时所包含的字段信息以及它们的顺序
datefmt:指定日期时间格式。该选项要在format中包含时间字段%(asctime)s时才有效
level:设置rootlogger(后边会讲解具体概念)的日志级别。
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件。stream和filename不能同时提供,否则会引发 ValueError异常


style:指定format格式字符串的风格,可取值为'%'、'{'和'$',默认为'%'

handlers:该选项如果被指定,它应该是一个创建了多个Handler的可迭代对象,这些handler将会被添加到root logger。filename、stream和handlers这三个配置项只
能有一个存在,不能同时出现2个或3个,否则会引发ValueError异常

 日志format格式字符串详解:

%(name)s:Logger的名字,并非用户名,默认是'root',因为默认使用的是 rootLogger

%(levelno)s:日志记录的数字形式的日志级别(10, 20, 30, 40, 50)

%(levelname)s:该日志记录的文字形式的日志级别('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL')

%(pathname)s:调用日志输出函数的模块的完整路径名,可能没有

%(filename)s:调用日志输出函数的模块的文件名,包含文件后缀

%(module)s:调用日志输出函数的模块名,不包含后缀

%(funcName)s:调用日志输出函数的函数名

%(lineno)d:调用日志输出函数的语句所在的代码行

%(created)f:当前时间,用UNIX标准的表示时间的浮 点数表示

%(relativeCreated)d:输出日志信息时的,自Logger创建以 来的毫秒数

%(asctime)s:字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒

%(thread)d:线程ID。可能没有

%(threadName)s:线程名。可能没有

%(process)d:进程ID。可能没有

%(message)s:用户输出的消息

import logging
logging.basicConfig(
    level=logging.DEBUG ,    #指定日志器的日志级别,多输出一些细节
    # level = logging.WARNING  #就不用输出那些细节了
    format = '%(name)s %(asctime)s [%(lineno)d] ---%(message)s', #指定日志格式字符串
    # level和format也是不能变的,它是参数,不是变量
    # %(lineno)d指定代码块的行
    # %(name)s当前管理员的用户
    datefmt = '%d/%m/%Y %H:%M:%S',#指定日期时间格式
    filename = 'logging_info' #自动创建了一个文件,并且把日志写到了文件里

)
logging.debug('debug message')
logging.info('info message')
logging.warning('warning message')
logging.error('error message')
logging.critical('critical message')
日志设置的列子

 

5.其他说明

几个要说明的内容:
  • logging.basicConfig()函数是一个一次性的简单配置工具使,也就是说只有在第一次调用该函数时会起作用,后续再次调用该函数时完全不会产生任何操作的,多次调用的设置并不是累加操作。
  • 日志器(Logger)是有层级关系的,上面调用的logging模块级别的函数所使用的日志器是RootLogger类的实例,其名称为'root',它是处于日志器层级关系最顶层的日志器,且该实例是以单例模式存在的。
  • 如果要记录的日志中包含变量数据,可使用一个格式字符串作为这个事件的描述消息(logging.debug、logging.info等函数的第一个参数),然后将变量数据作为第二个参数*args的值进行传递,如:logging.warning('%s is %d years old.', 'Tom', 10),输出内容为WARNING:root:Tom is 10 years old.
  • logging.debug(), logging.info()等方法的定义中,除了msg和args参数外,还有一个**kwargs参数。它们支持3个关键字参数: exc_info, stack_info, extra,下面对这几个关键字参数作个说明。
关于exc_info, stack_info, extra关键词参数的说明:
  • exc_info: 其值为布尔值,如果该参数的值设置为True,则会将异常异常信息添加到日志消息中。如果没有异常信息则添加None到日志信息中。
  • stack_info: 其值也为布尔值,默认值为False。如果该参数的值设置为True,栈信息将会被添加到日志信息中。
  • extra: 这是一个字典(dict)参数,它可以用来自定义消息格式中所包含的字段,但是它的key不能与logging模块定义的字段冲突。
一个例子:

在日志消息中添加exc_info和stack_info信息,并添加两个自定义的字端 ip和user

LOG_FORMAT = "%(asctime)s - %(levelname)s - %(user)s[%(ip)s] - %(message)s"
DATE_FORMAT = "%m/%d/%Y %H:%M:%S %p"

logging.basicConfig(format=LOG_FORMAT, datefmt=DATE_FORMAT)
logging.warning("Some one delete the log file.", exc_info=True, stack_info=True, extra={'user': 'Tom', 'ip':'47.98.53.222'})

输出结果:

05/08/2017 16:35:00 PM - WARNING - Tom[47.98.53.222] - Some one delete the log file.

NoneType
Stack (most recent call last):
  File "C:/Users/wader/PycharmProjects/LearnPython/day06/log.py", line 45, in <module>
    logging.warning("Some one delete the log file.", exc_info=True, stack_info=True, extra={'user': 'Tom', 'ip':'47.98.53.222'})

6.日志流处理流程

 

6.1logging模块的四大组件的介绍:

6.1.1. Logger(日志器)    需要通过处理器(handler)将日志信息输出到目标位置,如:文件、sys.stdout、网络等;

Logger对象有3个任务要做:

  • 1)向应用程序代码暴露几个方法,使应用程序可以在运行时记录日志消息;
  • 2)基于日志严重等级(默认的过滤设施)或filter对象来决定要对哪些日志进行后续处理;
  • 3)将日志消息传送给所有感兴趣的日志handlers。

Logger对象最常用的方法分为两类:配置方法 和 消息发送方法

最常用的配置方法如下:

方法描述
Logger.setLevel() 设置日志器将会处理的日志消息的最低严重级别
Logger.addHandler() 和 Logger.removeHandler() 为该logger对象添加 和 移除一个handler对象
Logger.addFilter() 和 Logger.removeFilter() 为该logger对象添加 和 移除一个filter对象

关于Logger.setLevel()方法的说明:

内建等级中,级别最低的是DEBUG,级别最高的是CRITICAL。例如setLevel(logging.INFO),此时函数参数为INFO,那么该logger将只会处理INFO、WARNING、ERROR和CRITICAL级别的日志,而DEBUG级别的消息将会被忽略/丢弃。

logger对象配置完成后,可以使用下面的方法来创建日志记录:

方法描述
Logger.debug(), Logger.info(), Logger.warning(), Logger.error(), Logger.critical() 创建一个与它们的方法名对应等级的日志记录
Logger.exception() 创建一个类似于Logger.error()的日志消息
Logger.log() 需要获取一个明确的日志level参数来创建一个日志记录

说明:

  • Logger.exception()与Logger.error()的区别在于:Logger.exception()将会输出堆栈追踪信息,另外通常只是在一个exception handler中调用该方法。
  • Logger.log()与Logger.debug()、Logger.info()等方法相比,虽然需要多传一个level参数,显得不是那么方便,但是当需要记录自定义level的日志时还是需要该方法来完成。

那么,怎样得到一个Logger对象呢?一种方式是通过Logger类的实例化方法创建一个Logger类的实例,但是我们通常都是用第二种方式--logging.getLogger()方法。

logging.getLogger()方法有一个可选参数name,该参数表示将要返回的日志器的名称标识,如果不提供该参数,则其值为'root'。若以相同的name参数值多次调用getLogger()方法,将会返回指向同一个logger对象的引用。

  关于logger的层级结构与有效等级的说明:

  • logger的名称是一个以'.'分割的层级结构,每个'.'后面的logger都是'.'前面的logger的children,例如,有一个名称为 foo 的logger,其它名称分别为 foo.bar, foo.bar.baz 和 foo.bam都是 foo 的后代。
  • logger有一个"有效等级(effective level)"的概念。如果一个logger上没有被明确设置一个level,那么该logger就是使用它parent的level;如果它的parent也没有明确设置level则继续向上查找parent的parent的有效level,依次类推,直到找到个一个明确设置了level的祖先为止。需要说明的是,root logger总是会有一个明确的level设置(默认为 WARNING)。当决定是否去处理一个已发生的事件时,logger的有效等级将会被用来决定是否将该事件传递给该logger的handlers进行处理。
  • child loggers在完成对日志消息的处理后,默认会将日志消息传递给与它们的祖先loggers相关的handlers。因此,我们不必为一个应用程序中所使用的所有loggers定义和配置handlers,只需要为一个顶层的logger配置handlers,然后按照需要创建child loggers就可足够了。我们也可以通过将一个logger的propagate属性设置为False来关闭这种传递机制。

6.1.2.  Handler(处理器)      将logger创建的日志记录发送到合适的目的输出,日志器(logger)可以设置多个处理器(handler)将同一条日志记录输出到不同的位置

Handler对象的作用是(基于日志消息的level)将消息分发到handler指定的位置(文件、网络、邮件等)。Logger对象可以通过addHandler()方法为自己添加0个或者更多个handler对象。比如,一个应用程序可能想要实现以下几个日志需求:

  • 1)把所有日志都发送到一个日志文件中;
  • 2)把所有严重级别大于等于error的日志发送到stdout(标准输出);
  • 3)把所有严重级别为critical的日志发送到一个email邮件地址。
    这种场景就需要3个不同的handlers,每个handler复杂发送一个特定严重级别的日志到一个特定的位置。

一个handler中只有非常少数的方法是需要应用开发人员去关心的。对于使用内建handler对象的应用开发人员来说,似乎唯一相关的handler方法就是下面这几个配置方法:

方法描述
Handler.setLevel() 设置handler将会处理的日志消息的最低严重级别
Handler.setFormatter() 为handler设置一个格式器对象
Handler.addFilter() 和 Handler.removeFilter() 为handler添加 和 删除一个过滤器对象

需要说明的是,应用程序代码不应该直接实例化和使用Handler实例。因为Handler是一个基类,它只定义了素有handlers都应该有的接口,同时提供了一些子类可以直接使用或覆盖的默认行为。下面是一些常用的Handler:

 

Handler描述
logging.StreamHandler 将日志消息发送到输出到Stream,如std.out, std.err或任何file-like对象。
logging.FileHandler 将日志消息发送到磁盘文件,默认情况下文件大小会无限增长
logging.handlers.RotatingFileHandler 将日志消息发送到磁盘文件,并支持日志文件按大小切割
logging.hanlders.TimedRotatingFileHandler 将日志消息发送到磁盘文件,并支持日志文件按时间切割
logging.handlers.HTTPHandler 将日志消息以GET或POST的方式发送给一个HTTP服务器
logging.handlers.SMTPHandler 将日志消息发送给一个指定的email地址
logging.NullHandler 该Handler实例会忽略error messages,通常被想使用logging的library开发者使用来避免'No handlers could be found for logger XXX'信息的出现。

 

6.1.3  Filter(过滤器)   实现日志过滤,从而只保留感兴趣的日志

Filter可以被Handler和Logger用来做比level更细粒度的、更复杂的过滤功能。Filter是一个过滤器基类,它只允许某个logger层级下的日志事件通过过滤。该类定义如下:

class logging.Filter(name='')
    filter(record)

比如,一个filter实例化时传递的name参数值为'A.B',那么该filter实例将只允许名称为类似如下规则的loggers产生的日志记录通过过滤:'A.B','A.B,C','A.B.C.D','A.B.D',而名称为'A.BB', 'B.A.B'的loggers产生的日志则会被过滤掉。如果name的值为空字符串,则允许所有的日志事件通过过滤。

filter方法用于具体控制传递的record记录是否能通过过滤,如果该方法返回值为0表示不能通过过滤,返回值为非0表示可以通过过滤。

说明:

  • 如果有需要,也可以在filter(record)方法内部改变该record,比如添加、删除或修改一些属性。
  • 我们还可以通过filter做一些统计工作,比如可以计算下被一个特殊的logger或handler所处理的record数量等。

6.1.4.  formatter(格式器) 实现同一条日志以不同的格式输出到不同的地方

Formater对象用于配置日志信息的最终顺序、结构和内容。与logging.Handler基类不同的是,应用代码可以直接实例化Formatter类。另外,如果你的应用程序需要一些特殊的处理行为,也可以实现一个Formatter的子类来完成。

Formatter类的构造方法定义如下:

logging.Formatter.__init__(fmt=None, datefmt=None, style='%')

可见,该构造方法接收3个可选参数:

  • fmt:指定消息格式化字符串,如果不指定该参数则默认使用message的原始值
  • datefmt:指定日期格式字符串,如果不指定该参数则默认使用"%Y-%m-%d %H:%M:%S"
  • style:Python 3.2新增的参数,可取值为 '%', '{'和 '$',如果不指定该参数则默认使用'%'

 

6.2日志流处理流程:

  • 1)(在用户代码中进行)日志记录函数调用,如:logger.info(...),logger.debug(...)等;
  • 2)判断要记录的日志级别是否满足日志器设置的级别要求(要记录的日志级别要大于或等于日志器设置的级别才算满足要求),如果不满足则该日志记录会被丢弃并终止后续的操作,如果满足则继续下一步操作;
  • 3)根据日志记录函数调用时掺入的参数,创建一个日志记录(LogRecord类)对象;
  • 4)判断日志记录器上设置的过滤器是否拒绝这条日志记录,如果日志记录器上的某个过滤器拒绝,则该日志记录会被丢弃并终止后续的操作,如果日志记录器上设置的过滤器不拒绝这条日志记录或者日志记录器上没有设置过滤器则继续下一步操作--将日志记录分别交给该日志器上添加的各个处理器;
  • 5)判断要记录的日志级别是否满足处理器设置的级别要求(要记录的日志级别要大于或等于该处理器设置的日志级别才算满足要求),如果不满足记录将会被该处理器丢弃并终止后续的操作,如果满足则继续下一步操作;
  • 6)判断该处理器上设置的过滤器是否拒绝这条日志记录,如果该处理器上的某个过滤器拒绝,则该日志记录会被当前处理器丢弃并终止后续的操作,如果当前处理器上设置的过滤器不拒绝这条日志记录或当前处理器上没有设置过滤器测继续下一步操作;
  • 7)如果能到这一步,说明这条日志记录经过了层层关卡允许被输出了,此时当前处理器会根据自身被设置的格式器(如果没有设置则使用默认格式)将这条日志记录进行格式化,最后将格式化后的结果输出到指定位置(文件、网络、类文件的Stream等);
  • 8)如果日志器被设置了多个处理器的话,上面的第5-8步会执行多次;
  • 9)这里才是完整流程的最后一步:判断该日志器输出的日志消息是否需要传递给上一级logger(之前提到过,日志器是有层级关系的)的处理器,如果propagate属性值为1则表示日志消息将会被输出到处理器指定的位置,同时还会被传递给parent日志器的handlers进行处理直到当前日志器的propagate属性为0停止,如果propagate值为0则表示不向parent日志器的handlers传递该消息,到此结束。

可见,一条日志信息要想被最终输出需要依次经过以下几次过滤:

  • 日志器等级过滤;
  • 日志器的过滤器过滤;
  • 日志器的处理器等级过滤;
  • 日志器的处理器的过滤器过滤;

需要说明的是: 关于上面第9个步骤,如果propagate值为1,那么日志消息会直接传递交给上一级logger的handlers进行处理,此时上一级logger的日志等级并不会对该日志消息进行等级过滤。

 

'''
critical=50
error =40
warning =30
info = 20
debug =10
'''


import logging

#1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出
logger=logging.getLogger(__file__)

#2、Filter对象:不常用,略

#3、Handler对象:接收logger传来的日志,然后控制输出
h1=logging.FileHandler('t1.log') #打印到文件
h2=logging.FileHandler('t2.log') #打印到文件
h3=logging.StreamHandler() #打印到终端

#4、Formatter对象:日志格式
formmater1=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S %p',)

formmater2=logging.Formatter('%(asctime)s :  %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S %p',)

formmater3=logging.Formatter('%(name)s %(message)s',)


#5、为Handler对象绑定格式
h1.setFormatter(formmater1)
h2.setFormatter(formmater2)
h3.setFormatter(formmater3)

#6、将Handler添加给logger并设置日志级别
logger.addHandler(h1)
logger.addHandler(h2)
logger.addHandler(h3)
logger.setLevel(10)

#7、测试
logger.debug('debug')
logger.info('info')
logger.warning('warning')
logger.error('error')
logger.critical('critical')
列子

 

"""
logging配置
"""

import os
import logging.config

# 定义三种日志输出格式 开始

standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
                  '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字

simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'

id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'

# 定义日志输出格式 结束

logfile_dir = os.path.dirname(os.path.abspath(__file__))  # log文件的目录

logfile_name = 'all2.log'  # log文件名

# 如果不存在定义的日志目录就创建一个
if not os.path.isdir(logfile_dir):
    os.mkdir(logfile_dir)

# log文件的全路径
logfile_path = os.path.join(logfile_dir, logfile_name)

# log配置字典
LOGGING_DIC = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'standard': {
            'format': standard_format
        },
        'simple': {
            'format': simple_format
        },
    },
    'filters': {},
    'handlers': {
        #打印到终端的日志
        'console': {
            'level': 'DEBUG',
            'class': 'logging.StreamHandler',  # 打印到屏幕
            'formatter': 'simple'
        },
        #打印到文件的日志,收集info及以上的日志
        'default': {
            'level': 'DEBUG',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件
            'formatter': 'standard',
            'filename': logfile_path,  # 日志文件
            'maxBytes': 1024*1024*5,  # 日志大小 5M
            'backupCount': 5,
            'encoding': 'utf-8',  # 日志文件的编码,再也不用担心中文log乱码了
        },
    },
    'loggers': {
        #logging.getLogger(__name__)拿到的logger配置
        '': {
            'handlers': ['default', 'console'],  # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
            'level': 'DEBUG',
            'propagate': True,  # 向上(更高level的logger)传递
        },
    },
}


def load_my_logging_cfg():
    logging.config.dictConfig(LOGGING_DIC)  # 导入上面定义的logging配置
    logger = logging.getLogger(__name__)  # 生成一个log实例
    logger.info('It works!')  # 记录该文件的运行状态

if __name__ == '__main__':
    load_my_logging_cfg()
列子

 

Logger与Handler的级别

logger是第一级过滤,然后才能到handler,我们可以给logger和handler同时设置level,但是需要注意的是

验证
import logging


form=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S %p',)

ch=logging.StreamHandler()

ch.setFormatter(form)
# ch.setLevel(10)
ch.setLevel(20)

l1=logging.getLogger('root')
# l1.setLevel(20)
l1.setLevel(10)
l1.addHandler(ch)

l1.debug('l1 debug')
View Code
注意注意注意:


#1、有了上述方式我们的好处是:所有与logging模块有关的配置都写到字典中就可以了,更加清晰,方便管理


#2、我们需要解决的问题是:
    1、从字典加载配置:logging.config.dictConfig(settings.LOGGING_DIC)

    2、拿到logger对象来产生日志
    logger对象都是配置到字典的loggers 键对应的子字典中的
    按照我们对logging模块的理解,要想获取某个东西都是通过名字,也就是key来获取的
    于是我们要获取不同的logger对象就是
    logger=logging.getLogger('loggers子字典的key名')

    
    但问题是:如果我们想要不同logger名的logger对象都共用一段配置,那么肯定不能在loggers子字典中定义n个key   
 'loggers': {    
        'l1': {
            'handlers': ['default', 'console'],  #
            'level': 'DEBUG',
            'propagate': True,  # 向上(更高level的logger)传递
        },
        'l2: {
            'handlers': ['default', 'console' ], 
            'level': 'DEBUG',
            'propagate': False,  # 向上(更高level的logger)传递
        },
        'l3': {
            'handlers': ['default', 'console'],  #
            'level': 'DEBUG',
            'propagate': True,  # 向上(更高level的logger)传递
        },

}

    
#我们的解决方式是,定义一个空的key
    'loggers': {
        '': {
            'handlers': ['default', 'console'], 
            'level': 'DEBUG',
            'propagate': True, 
        },

}

这样我们再取logger对象时
logging.getLogger(__name__),不同的文件__name__不同,这保证了打印日志时标识信息不同,但是拿着该名字去loggers里找key名时却发现找不到,于是默认使用key=''的配置
!!!关于如何拿到logger对象的详细解释!!!
"""
MyLogging Test
"""

import time
import logging
import my_logging  # 导入自定义的logging配置

logger = logging.getLogger(__name__)  # 生成logger实例


def demo():
    logger.debug("start range... time:{}".format(time.time()))
    logger.info("中文测试开始。。。")
    for i in range(10):
        logger.debug("i:{}".format(i))
        time.sleep(0.2)
    else:
        logger.debug("over range... time:{}".format(time.time()))
    logger.info("中文测试结束。。。")

if __name__ == "__main__":
    my_logging.load_my_logging_cfg()  # 在你程序文件的入口加载自定义logging配置
    demo()
View Code

 

 

 

18.re正则模块

1.介绍:正则表达式本身是一种小型的、高度专业化的编程语言,而在python中,通过内嵌集成re模块,程序员们可以直接调用来实现正则匹配。正则表达式模式被编译成一系列的字节码,然后由用C编写的匹配引擎执行。

2.常用匹配模式(元字符)及预定义字符集表

元字符表

.

需要字符串里完全符合,匹配规则,就匹配,(规则里的.元字符)可以是任何一个字符,匹配任意除换行符"\n"外的字符(在DOTALL模式中也能匹配换行符)

\

1.反斜杠后边跟元字符去除特殊功能;(即将特殊字符转义成普通字符),2.反斜杠后边跟普通字符实现特殊功能;(即预定义字符),3.\2引用序号对应的字组

*

需要字符串里完全符合,匹配规则,就匹配,(规则里的*元字符)前面的一个字符可以是0个或多个原本字符,匹配前一个字符0或多次,贪婪匹配前导字符有多少个就匹配多少个很贪婪,如果规则里只有一个分组,尽量避免用*否则会有可能匹配出空字符串

+

需要字符串里完全符合,匹配规则,就匹配,(规则里的+元字符)前面的一个字符可以是1个或多个原本字符,匹配前一个字符1次或无限次,贪婪匹配前导字符有多少个就匹配多少个很贪婪

?

需要字符串里完全符合,匹配规则,就匹配,(规则里的?元字符)前面的一个字符可以是0个或1个原本字符,匹配一个字符0次或1次,还有一个功能是可以防止贪婪匹配,详情见防贪婪匹配

^

字符串开始位置与匹配规则符合就匹配,否则不匹配,匹配字符串开头。在多行模式中匹配每一行的开头,^元字符如果写到[]字符集里就是反取

$

字符串结束位置与匹配规则符合就匹配,否则不匹配,匹配字符串末尾,在多行模式中匹配每一行的末尾

|

|或,或就是前后其中一个符合就匹配

{}

需要字符串里完全符合,匹配规则,就匹配,(规则里的 {} 元字符)前面的一个字符,是自定义字符数,位数的原本字符,{m}匹配前一个字符m次,{m,n}匹配前一个字符m至n次,若省略n,则匹配m至无限次,{0,}匹配前一个字符0或多次,等同于*元字符,{+,}匹配前一个字符1次或无限次,等同于+元字符,{0,1}匹配前一个字符0次或1次,等同于?元字符

[]

需要字符串里完全符合,匹配规则,就匹配,(规则里的 [] 元字符)对应位置是[]里的任意一个字符就匹配,字符集。对应的位置可以是字符集中任意字符。字符集中的字符可以逐个列出,也可以给出范围,如[abc]或[a-c]。[^abc]表示取反,即非abc。所有特殊字符在字符集中都失去其原有的特殊含义。用\反斜杠转义恢复特殊字符的特殊含义。

()

也就是分组匹配,()里面的为一个组也可以理解成一个整体,如果()后面跟的是特殊元字符如   (adc)*   那么*控制的前导字符就是()里的整体内容,不再是前导一个字符

 

预定义字符集表(可以写在字符集[...]中) 

\d

\d匹配任何十进制数,它相当于类[0-9],\d+如果需要匹配一位或者多位数的数字时用

a\bc

a1c

\D

\D匹配任何非数字字符,它相当于类[^0-9]

a\Dc

abc

\s

\s匹配任何空白字符,它相当于类[\t\n\r\f\v]

a\sc

a c

\S

\S匹配任何非空白字符,它相当于类[^\t\n\r\f\v]

a\Sc

abc

\w

\w匹配包括下划线在内任何字母数字字符,它相当于类[a-zA-Z0-9_]

a\wc

abc

\W

\W匹配非任何字母数字字符包括下划线在内,它相当于类[^a-zA-Z0-9_]

a\Wc

a c

\A

仅匹配字符串开头,同^

\Aabc

abc

\Z

仅匹配字符串结尾,同$

abc\Z

abc

\b

b匹配一个单词边界,也就是指单词和空格间的位置

\babc\b
a\b!bc

空格abc空格
a!bc

\B

[^\b]

a\Bbc

abc

 

3.元字符详解

^元字符

字符串开始位置与匹配规则符合就匹配,否则不匹配,匹配字符串开头。在多行模式中匹配每一行的开头^元字符如果写到[]字符集里就是反取

import re   #第一步,要引入re模块
a = re.findall("^匹配规则", "匹配规则这个字符串是否匹配")   #字符串开始位置与匹配规则符合就匹配,否则不匹配
print(a)  #以列表形式返回匹配到的字符串
#打印出 ['匹配规则']
^元字符

[^a-z]反取,匹配出除字母外的字符,^元字符如果写到字符集里就是反取

import re   #第一步,要引入re模块
a = re.findall("[^a-z]", "匹配s规则这s个字符串是否s匹配f规则则re则则则")   #反取,匹配出除字母外的字符
print(a)  #以列表形式返回匹配到的字符串
#打印出 ['匹', '配', '规', '则', '这', '个', '字', '符', '串', '是', '否', '匹', '配', '规', '则', '则', '则', '则', '则']
View Code

$元字符

字符串结束位置与匹配规则符合就匹配,否则不匹配,匹配字符串末尾,在多行模式中匹配每一行的末尾

import re   #第一步,要引入re模块
a = re.findall("匹配规则$", "这个字符串是否匹配规则")   #字符串结束位置与匹配规则符合就匹配,否则不匹配
print(a)  #以列表形式返回匹配到的字符串
#打印出 ['匹配规则']
$元字符

*元字符

需要字符串里完全符合,匹配规则,就匹配,(规则里的*元字符)前面的一个字符可以是0个或多个原本字符,匹配前一个字符0或多次,贪婪匹配前导字符有多少个就匹配多少个很贪婪,如果规则里只有一个分组,尽量避免用*否则会有可能匹配出空字符串

import re   #第一步,要引入re模块
a = re.findall("匹配规则*", "这个字符串是否匹配规则则则则则")   #需要字符串里完全符合,匹配规则,就匹配,(规则里的*元字符)前面的一个字符可以是0或多个原本字符
print(a)  #以列表形式返回匹配到的字符串
#打印出 ['匹配规则则则则则']
*元字符

+元字符

需要字符串里完全符合,匹配规则,就匹配,(规则里的+元字符)前面的一个字符可以是1个或多个原本字符

匹配前一个字符1次或无限次,贪婪匹配前导字符有多少个就匹配多少个很贪婪

 

 

?元字符,和防止贪婪匹配

需要字符串里完全符合,匹配规则,就匹配,(规则里的?元字符)前面的一个字符可以是0个或1个原本字符

匹配一个字符0次或1次

还有一个功能是可以防止贪婪匹配,详情见防贪婪匹配

 

{}元字符,范围

需要字符串里完全符合,匹配规则,就匹配,(规则里的 {} 元字符)前面的一个字符,是自定义字符数,位数的原本字符

{m}匹配前一个字符m次,{m,n}匹配前一个字符m至n次,若省略n,则匹配m至无限次

{0,}匹配前一个字符0或多次,等同于*元字符
{+,}匹配前一个字符1次或无限次,等同于+元字符
{0,1}匹配前一个字符0次或1次,等同于?元字符

 

[]元字符,字符集

需要字符串里完全符合,匹配规则,就匹配,(规则里的 [] 元字符)对应位置是[]里的任意一个字符就匹配

字符集。对应的位置可以是字符集中任意字符。字符集中的字符可以逐个列出,也可以给出范围,如[abc]或[a-c]。[^abc]表示取反,即非abc。
所有特殊字符在字符集中都失去其原有的特殊含义。用\反斜杠转义恢复特殊字符的特殊含义  



[^]非,反取,匹配出除[^]里面的字符,^元字符如果写到字符集里就是反取

 

 

预定义字符详解

\d匹配任何十进制数,它相当于类[0-9]

 

\d+如果需要匹配一位或者多位数的数字时用

 

\D匹配任何非数字字符,它相当于类[^0-9]

 

\s匹配任何空白字符,它相当于类[\t\n\r\f\v]

 

\S匹配任何非空白字符,它相当于类[^\t\n\r\f\v]

 

\w匹配包括下划线在内任何字母数字字符,它相当于类[a-zA-Z0-9_]

 

\W匹配非任何字母数字字符包括下划线在内,它相当于类[^a-zA-Z0-9_]

 

 

 

re模块中常用功能函数

 

posted @ 2019-01-15 20:58  二哈的博客  阅读(816)  评论(0编辑  收藏  举报