常用datesets
数据增强采用随机高斯噪声,JPRG压缩,随机翻转,使数据集一变多
拼接
MS COCO是用于目标检测,语义分割的数据集。包括82783训练图像,40504测试图像
CASIA v2.0:包含7,491个真实图像和5,123个伪造(拼接和复制移动)彩色图像,尺寸范围为240 × 160至900 × 600 JPEG和TIFF格式
CASIA:包含TIFF格式的图像1275对(篡改图像1275个,原始图像1275个),其中大部分像素分辨率约为384×256 。拼接的伪造区域是小而精细的对象
Columbia gray DVMM:由933个真实图像和912个BMP格式的拼接图像组成,大小均为128 × 128像素,没有任何后处理.
DSO-1:由100个具有像素方向真实情况的拼接图像和100个原始图像组成,分辨率为2,048 × 1,536像素
COLUMB:包含179对TIFF格式图像,大小757×568。拼接伪造区域是简单、大、无意义的区域
FORENSICS:由高分辨率图像(2018×1536)组成,包含144对PNG格式的图像。拼接的伪造区域是小而精细的对象,但是这些区域更真实,更接近背景。
PS-Battles:
The Reddit dataset:本文收集9947个可用的图像对。(Image provenance analysis at scale 的作者从在线社区收集了reddit 数据集)
MFC2018:
carvalho[]:94幅图像
Realistic Tampering[]:220图像,拼接后还有后处理操作。这个数据集中也有复制粘贴图像
参考:
CASIA v2.0:J. Dong and W. Wang. (2011). CASIA Tampered Image Detection Evalua-tion (TIDE) Database, v1.0 and v2.0. [Online]. Available: http://forensics.idealtest.org/
Columbia gray DVMM:T.-T. Ng, J. Hsu, and S.-F. Chang. Columbia Image Splicing Detection Evaluation Dataset. Accessed: Sep. 19, 2019. [Online]. Available:http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm
DSO-1:T. J. de Carvalho, C. Riess, E. Angelopoulou, H. Pedrini, and A. Rocha,
``Exposing digital image forgeries by illumination color classification,''
IEEE Trans. Inf. Forensics Security, vol. 8, no. 7, pp. 1182-1194, Jul. 2013.
COLUMB:Y.-F. Hsu , S.-F. Chang , Detecting image splicing using geometry invariants and camera characteristics consistency, in: Proceedings of the IEEE Interna- tional Conference on Multimedia and Expo, IEEE, 2006, pp. 549–552 .
FORENSICS: https://signalprocessingsociety.org/newsletter/2014/01/ieee- ifs- tc- image- forensics- challenge- website- new- submissions (2014)
复制粘贴
CMH:由四个CMH子数据集组成,共有108张复制-移动篡改图像。篡改图像包含了旋转和缩放变换的攻击
MICC-F200:有110个基础和110个篡改图像。图像的大小范围从722×480至800×600。然而,该数据集不提供篡改图像的 ground truth
MICC-F600:由160幅篡改图像和440幅原始图像组成,图像分辨率从800×533到3888×2592不等
MICC-2000:有1300个基础和700张篡改图像,尺寸为2048×1536。然而,该数据集也不提供篡改图像的 ground truth
GRIP:有80个基本图像和80个相应的篡改图像。大小相同都是 768×1024。数据集提供了相应的ground truth。大部分复制的片段很光滑。
Coverage:数据集有100个基本图像和相应的篡改图像,平均尺寸为400×486
SUN:数据集有397个类别和108,754个基本图像。相应的注释图像可以方便地生成篡改图像和 ground truth
FAU:数据集有48张高分辨率的基础图像和48张对应的具有真实复制-移动操作的篡改图像,平均大小为3000×2300
CASIA:数据集有1309个复制-移动伪造图像,其中包含了旋转、缩放变换的攻击。
CoMoFoD:数据集有200个基本图像,平均大小为512×512
MFC2018: Media forensicschallenge 2018 包含1327正样本对和16673负样本对
PS-Battles:共102028图像,11142个子类。(The ps-battles dataset - an image collection for image manipulation detection的作者收集而来)
参考
FAU: V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, “An evaluation of popular copy-move forgery detection approaches,” IEEE Trans. on Inf. Forensics and Security, vol. 7, no. 6, pp. 1841–1854, 2012
GRIP: D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field copymove forgery detection,” IEEE Trans. on Inf. Forensics and Security, vol. 10, no. 11, pp. 2284–2297, 2015
MICC-F200: I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, “A SIFT-based forensic method for copy–move attack detection and transformation recovery,” IEEE Trans. on Inf. Forensics and Security, vol. 6, no. 3, pp. 1099–1110, 2011
MICC-600: I. Amerini, L. Ballan, R. Caldelli, A. D. Bimbo, L. D. Tongo, and G. Serra, “Copy-move forgery detection and localization by means of robust clustering with j-linkage,” Signal Process.: Image Commun., vol. 28, no. 6, pp. 659 – 669, 2013
CMH:E. Silva, T. Carvalho, A. Ferreira, and A. Rocha, “Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes,” J. Vis. Commun. and Image Represent., vol. 29, pp. 16 – 32, 2015
COVERAGE:B. Wen, Y. Zhu, R. Subramanian, T. Ng, X. Shen, and S. Winkler, “COVERAGE - a novel database for copy-move forgery detection,” in Proc. IEEE Int. Conf. Image Process., 2016, pp. 161–165.
SUN:J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “SUN database: Large-scale scene recognition from abbey to zoo,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 3485–3492
CoMoFoD:D. Tralic, I. Zupancic, S. Grgic, and M. Grgic, “CoMoFoD—New database for copy-move forgery detection,” in Proc. ELMAR, Sep. 2013, pp. 49–54.