代码改变世界

python绘制疫情图

2020-02-22 22:54  默默不语  阅读(5216)  评论(5编辑  收藏  举报

python中进行图表绘制的库主要有两个:matplotlibpyecharts, 相比较而言:

  matplotlib中提供了BaseMap可以用于地图的绘制,但是个人觉得其绘制的地图不太美观,而且安装相较而言有点麻烦。

  pyecharts是基于百度开源的js库echarts而来,其最大的特点是:安装简单、使用也简单。

所以决定使用pyecharts来绘制地图。

1.安装pyecharts

  如果有anaconda环境,可用 pip install pyecharts 命令安装pyecharts。

  由于我们要绘制中国的疫情地图,所以还要额外下载几个地图。地图文件被分成了三个Python包,分别为:

    全球国家地图: echarts-countries-pypkg

    安装命令:pip install echarts-countries-pypkg

    中国省级地图: echarts-china-provinces-pypkg

    安装命令:pip install echarts-china-provinces-pypkg

    中国市级地图: echarts-china-cities-pypkg

    安装命令:pip install echarts-china-cities-pypkg

                                 

2.导包。

  绘制地图时我们根据自己需要导入需要的包,在pyecharts的官方文档 https://pyecharts.org/#/ 中详细列出了绘制各种图表的的方法及参数含义,而且提供了各种图标的demo,方便我们更好地使用pyecharts。

from pyecharts.charts import Map
from pyecharts import options as opts

 

3.代码

# 用于保存城市名称和确诊人数
map_data = []
for i in china :
    print(i)
    # 获得省份名称
    province = i["name"]
    print("province:",province)
    province_confirm = i["total"]["confirm"]
    # 保存省份名称和该省确诊人数
    map_data.append((i["name"],province_confirm))
c = (
    # 声明一个map对象
    Map()
    # 添加数据
    .add("确诊", map_data, "china")
    # 设置标题和颜色
    .set_global_opts(title_opts=opts.TitleOpts(title="全国疫情图"),
                     visualmap_opts=opts.VisualMapOpts(split_number=6,is_piecewise=True,
                                                       pieces=[{"min":1,"max":9,"label":"1-9人","color":"#ffefd7"},
                                                               {"min":10,"max":99,"label":"10-99人","color":"#ffd2a0"},
                                                               {"min":100,"max":499,"label":"100-499人","color":"#fe8664"},
                                                               {"min":500,"max":999,"label":"500-999人","color":"#e64b47"},
                                                               {"min":1000,"max":9999,"label":"1000-9999人","color":"#c91014"},
                                                               {"min":10000,"label":"10000人及以上","color":"#9c0a0d"}
                                                       ]))
    )
# 生成html文件
c.render("全国实时疫情.html")

  运行成功后就可以在工程目录下发现一个名为“全国实时疫情”的html文件,打开就可以看到我们绘制的疫情图啦!!

  

全部代码(包含保存到数据库,爬取数据、绘制疫情图):

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import json
import requests
import pymysql
# 装了anaconda的可以pip install pyecharts安装pyecharts
from pyecharts.charts import Map,Geo
from pyecharts import options as opts
from pyecharts.globals import GeoType,RenderType
# 绘图包参加网址https://pyecharts.org/#/zh-cn/geography_charts

id = 432
coon = pymysql.connect(user='root', password='root', host='127.0.0.1', port=3306, database='yiqing',use_unicode=True, charset="utf8")
cursor = coon.cursor()
url="https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5"
resp=requests.get(url)
html=resp.json()
data=json.loads(html["data"])
time = data["lastUpdateTime"]
data_info = time.split(' ')[0]
detail_time = time.split(' ')[1]
# 获取json数据的全国省份疫情情况数据
china=data["areaTree"][0]["children"]
# 用于保存城市名称和确诊人数
map_data = []
for i in china :
    print(i)
    # 获得省份名称
    province = i["name"]
    print("province:",province)
    province_confirm = i["total"]["confirm"]
    # 保存省份名称和该省确诊人数
    map_data.append((i["name"],province_confirm))
    # 各省份下有各市,获取各市的疫情数据
    for child in i["children"]:
        print(child)
        # 获取城市名称
        city = child["name"]
        print("city:",city)
        # 获取确诊人数
        confirm = int(child["total"]["confirm"])
        # 获取疑似人数
        suspect = int(child["total"]["suspect"])
        # 获取死亡人数
        dead = int(child["total"]["dead"])
        # 获取治愈人数
        heal = int(child["total"]["heal"])
        # 插入数据库中
        cursor.execute("INSERT INTO city(id,city,confirm,suspect,dead,heal,province,date_info,detail_time) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s)",
            (id, city, confirm, suspect, dead, heal, province, data_info, detail_time))
        id = id + 1
        coon.commit()
c = (
    # 声明一个map对象
    Map()
    # 添加数据
    .add("确诊", map_data, "china")
    # 设置标题和颜色
    .set_global_opts(title_opts=opts.TitleOpts(title="全国疫情图"),
                     visualmap_opts=opts.VisualMapOpts(split_number=6,is_piecewise=True,
                                                       pieces=[{"min":1,"max":9,"label":"1-9人","color":"#ffefd7"},
                                                               {"min":10,"max":99,"label":"10-99人","color":"#ffd2a0"},
                                                               {"min":100,"max":499,"label":"100-499人","color":"#fe8664"},
                                                               {"min":500,"max":999,"label":"500-999人","color":"#e64b47"},
                                                               {"min":1000,"max":9999,"label":"1000-9999人","color":"#c91014"},
                                                               {"min":10000,"label":"10000人及以上","color":"#9c0a0d"}
                                                       ]))
    )
# 生成html文件
c.render("全国实时疫情.html")
#
# china_total="确诊" + str(data["chinaTotal"]["confirm"])+ "疑似" + str(data["chinaTotal"]["suspect"])+  "死亡" + str(data["chinaTotal"]["dead"]) + "治愈" + str(data["chinaTotal"]["heal"]) + "更新日期" + data["lastUpdateTime"]
# print(china_total)