软件环境:

linux系统: CentOS6.7
Hadoop版本: 2.6.5
zookeeper版本: 3.4.8

##主机配置: ######一共m1, m2, m3, m4, m5这五部机, 每部主机的用户名都为centos ``` 192.168.179.201: m1 192.168.179.202: m2 192.168.179.203: m3 192.168.179.204: m4 192.168.179.205: m5

m1: Namenode, YARN, ResourceManager
m2: Namenode, YARN, ResourceManager
m3: Zookeeper, DataNode, NodeManager
m4: Zookeeper, DataNode, NodeManager
m5: Zookeeper, DataNode, NodeManager


<br>
##前期准备
####1.配置主机IP:

sudo vi /etc/sysconfig/network-scripts/ifcfg-eth0


####2.配置主机名:

sudo vi /etc/sysconfig/network


####3.配置主机名和IP的映射关系:

sudo vi /etc/hosts


####4.关闭防火墙
(1)临时关闭:

service iptables stop

service iptables status


(2)开机时自动关闭:

chkconfig iptables off

chkconfig iptables --list




---
<br>
<br>
<br>
##搭建步骤:
####一.安装配置Zookeeper集群(在m3.m4,m5三部主机上)
####1.解压

tar -zxvf zookeeper-3.4.8.tar.gz -C /home/hadoop/soft/zookeeper




----
<br>
####2.配置环境变量

vi /etc/profile

Zookeeper

export ZK_HOME=/home/centos/soft/zookeeper
export CLASSPATH=$CLASSPATH:$ZK_HOME/lib
export PATH=$PATH:$ZK_HOME/sbin:$ZK_HOME/bin

source /etc/profile




----
<br>
####3.修改配置
(1)配置zoo.cfg文件

cd /home/centos/soft/zookeeper/conf/

cp zoo_sample.cfg zoo.cfg

vi zoo.cfg

修改dataDir此项配置

dataDir=/home/centos/soft/zookeeper/tmp

添加以下三项配置

server.1=m3:2888:3888
server.2=m4:2888:3888
server.3=m5:2888:3888


(2)创建tmp目录

mkdir /home/centos/soft/zookeeper/tmp


(3)编辑myid文件

touch /home/centos/soft/zookeeper/tmp/myid

echo 1 > /home/centos/soft/zookeeper/tmp/myid ## 在m3主机上myid=1




---
<br>
####4.配置zookeeper日志存放位置
  1. 编辑```zkEnv.sh```文件

vi /home/centos/soft/zookeeper/bin/zkEnv.sh

编辑下列该项配置

if [ "x${ZOO_LOG_DIR}" = "x" ]
then
ZOO_LOG_DIR="/home/centos/soft/zookeeper/logs" ## 修改此项
fi



---
<br>
(5)创建```logs```目录

mkdir /home/centos/soft/zookeeper/logs




---
####5. 拷贝到其他主机并修改myid
(1)拷贝到其他主机

scp -r /home/centos/soft/zookeeper/ m4:/home/centos/soft/
scp -r /home/centos/soft/zookeeper/ m5:/home/centos/soft/



(2)修改myid

echo 2 > /home/centos/soft/zookeeper/tmp/myid ## m4主机
echo 3 > /home/centos/soft/zookeeper/tmp/myid ## m5主机




----
<br>
<br>
<br>
<br>
##二.安装配置hadoop集群
####1.解压

tar -zxvf hadoop-2.6.5.tar.gz -C /home/centos/soft/hadoop



---
<br>
####2.将Hadoop配置进环境变量

vi /etc/profile

Java

export JAVA_HOME=/home/centos/soft/jdk
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib
export PATH=$PATH:$JAVA_HOME/bin

Hadoop

export HADOOP_USER_NAME=centos
export HADOOP_HOME=/home/centos/soft/hadoop
export CLASSPATH=$CLASSPATH:$HADOOP_HOME/lib
export PATH=$PATH:$HADOOP_HOME/bin

source /etc/profile



---

####3.编辑hadoop-env.sh文件
####1.编辑hadoop-env.sh文件

export JAVA_HOME=/home/centos/soft/jdk


---
####2.编辑core-site.xml文件
fs.defaultFShdfs://ns1 hadoop.tmp.dir/home/centos/soft/hadoop/tmp ha.zookeeper.quorumm3:2181,m4:2181,m5:2181 hadoop.proxyuser.centos.hosts * hadoop.proxyuser.centos.groups * ```

3.编辑hdfs-site.xml文件

<configuration>
<property>
   <name>dfs.nameservices</name>
   <value>ns1</value>
</property>
<property>
   <name>dfs.ha.namenodes.ns1</name>
   <value>nn1,nn2</value>
</property>
<property>
   <name>dfs.namenode.rpc-address.ns1.nn1</name>
   <value>m1:9000</value>
</property>
<property>
   <name>dfs.namenode.http-address.ns1.nn1</name>
   <value>m1:50070</value>
</property>
<property>
   <name>dfs.namenode.rpc-address.ns1.nn2</name>
   <value>m2:9000</value>
</property>
<property>
   <name>dfs.namenode.http-address.ns1.nn2</name>
   <value>m2:50070</value>
</property>
<property>
   <name>dfs.namenode.shared.edits.dir</name>
   <value>qjournal://m3:8485;m4:8485;m5:8485/ns1</value>
</property>
<property>
   <name>dfs.journalnode.edits.dir</name>
   <value>/home/centos/soft/hadoop/journal</value>
</property>
<property>
   <name>dfs.namenode.name.dir</name>
   <value>/home/centos/soft/hadoop/tmp/dfs/name</value>
</property>
<property>  
 <name>dfs.datanode.data.dir</name>
 <value>/home/centos/soft/hadoop/tmp/dfs/data</value>
</property>
<property>
   <name>dfs.replication</name>
   <value>1</value>
</property>
<property>
   <name>dfs.ha.automatic-failover.enabled</name>
   <value>true</value>
</property>
<property>
   <name>dfs.webhdfs.enabled</name>
   <value>true</value>
</property>
<property>
   <name>dfs.client.failover.proxy.provider.ns1</name>
   <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
   <name>dfs.ha.fencing.methods</name>
   <value>
         sshfence
         shell(/bin/true)
   </value>
</property>
<property>
   <name>dfs.ha.fencing.ssh.private-key-files</name>
   <value>/home/centos/.ssh/id_rsa</value>
</property>
<property>
   <name>dfs.ha.fencing.ssh.connect-timeout</name>
   <value>30000</value>
</property>
<property>
   <name>dfs.permissions</name>
   <value>false</value>
</property>
<property>
    <name>heartbeat.recheck.interval</name>
   <value>2000</value>
</property>
<property>
   <name>dfs.heartbeat.interval</name>
      <value>1</value>
</property>
<property>
      <name>dfs.blockreport.intervalMsec</name>
      <value>3600000</value>
      <description>Determines block reporting interval in milliseconds.</description>
</property>
</configuration>

4.编辑mapred-site.xml文件

<configuration>
<property>
      <name>mapreduce.framework.name</name>
      <value>yarn</value>
</property>
<property>
      <name>mapreduce.jobhistory.address</name>
      <value>0.0.0.0:10020</value>
      <description>MapReduce JobHistory Server IPC host:port</description>
</property>
<property>
      <name>mapreduce.jobhistory.webapp.address</name>
      <value>0.0.0.0:19888</value>
      <description>MapReduce JobHistory Server Web UI host:port</description>
</property>
<property>
      <name>mapreduce.task.io.sort.mb</name>
      <value>1</value>
</property>
<property>
      <name>yarn.app.mapreduce.am.staging-dir</name>
      <value>/user</value>
</property>
<property>
      <name>mapreduce.jobhistory.intermediate-done-dir</name>
      <value>/user/history/done_intermediate</value>
</property>
<property>
      <name>mapreduce.jobhistory.done-dir</name>
      <value>/user/history</value>
</property>
</configuration>	

5.编辑yarn-site.xml文件

<configuration>
<property>
      <name>yarn.resourcemanager.ha.enabled</name>
      <value>true</value>
</property>
<property>
      <name>yarn.resourcemanager.cluster-id</name>
      <value>yrc</value>
</property>
<property>
      <name>yarn.resourcemanager.ha.rm-ids</name>
      <value>rm1,rm2</value>
</property>
<property>
      <name>yarn.resourcemanager.hostname.rm1</name>
      <value>m1</value>
</property>
<property>
      <name>yarn.resourcemanager.hostname.rm2</name>
      <value>m2</value>
</property>
<property>
      <name>yarn.resourcemanager.zk-address</name>
      <value>m3:2181,m4:2181,m5:2181</value>
</property>
<property>
      <name>yarn.nodemanager.aux-services</name>
      <value>mapreduce_shuffle,spark_shuffle</value>
</property>
<property>
      <name>yarn.nodemanager.resource.memory-mb</name>
      <value>2048</value>
</property>
<property>
      <name>yarn.scheduler.maximum-allocation-mb</name>
      <value>4096</value>
</property>
<property>
      <name>yarn.nodemanager.log-dirs</name>
      <value>/home/centos/soft/hadoop/logs</value>
</property>
<property>
      <name>yarn.resourcemanager.scheduler.class</name>
      <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<property>  
      <name>yarn.nodemanager.aux-services.spark_shuffle.class</name>  
      <value>org.apache.spark.network.yarn.YarnShuffleService</value>  
</property> 
<property>
      <name>yarn.nodemanager.pmem-check-enabled</name>
      <value>false</value>
      <description>是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true</description>
</property>
<property>
      <name>yarn.nodemanager.vmem-check-enabled</name>
      <value>false</value>
      <description>是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true</description>
</property>
<property>
      <name>spark.shuffle.service.port</name>
      <value>7337</value>
</property>
</configuration>

6.编辑slaves文件

编辑slaves文件, slaves是指定子节点的位置, 在HDFS上为DataNode的节点位置, 在YARN上为NodeManager的节点位置, 以你的实际情况而定

m3
m4
m5





##三.初始化Hadoop ####1. 配置主机之间免密码登陆 (1)在m1上生产一对密匙 ``` ssh-keygen -t rsa ```

(2)将公钥拷贝到其他节点,包括本主机

ssh-coyp-id 127.0.0.1
ssh-coyp-id localhost
ssh-coyp-id m1
ssh-coyp-id m2
ssh-coyp-id m3

(3)在其他主机上重复(1)(2)的操作



####2.将配置好的hadoop拷贝到其他节点 ``` scp -r /home/centos/soft/hadoop m2:/home/centos/soft/ scp -r /home/centos/soft/hadoop m3:/home/centos/soft/ scp -r /home/centos/soft/hadoop m4:/home/centos/soft/ scp -r /home/centos/soft/hadoop m5:/home/centos/soft/ ```

####注意:严格按照下面的步骤 ####3.启动zookeeper集群(分别在m3、m4、m5上启动zk) 1. 启动zookeeper服务 ``` cd /home/centos/soft/zookeeper-3.4.5/bin/ ``` ``` ./zkServer.sh start ```
  1. 查看状态:一个leader,两个follower
./zkServer.sh status

4.启动journalnode (分别在m3、m4、m5主机上执行, 必须在HDFS格式化前执行, 不然会报错)

(1)启动JournalNode服务

cd /home/centos/soft/hadoop
sbin/hadoop-daemon.sh start journalnode

(2)运行jps命令检验,m3、m4、m5上多了JournalNode进程

jps


####5.格式化HDFS(在m1上执行即可) (1)在m1上执行命令: ``` hdfs namenode -format ```

(2)格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/home/centos/soft/hadoop/tmp,然后将m1主机上的/home/centos/soft/hadoop下的tmp目录拷贝到m2主机上的/home/centos/soft/hadoop目录下

scp -r /home/centos/soft/hadoop/tmp/ m2:/home/centos/soft/hadoop/

6.格式化ZK(在m1上执行)

hdfs zkfc -formatZK

7.启动HDFS(在m1上执行)

sbin/start-dfs.sh

8.启动YARN(在m1,m2上执行)

sbin/start-yarn.sh

#### 至此,Hadoop-2.6.5配置完毕!!!






####四.检验Hadoop集群搭建成功 #######0.在Windows下编辑hosts文件, 配置主机名与IP的映射(此步骤可跳过)** ``` C:\Windows\System32\drivers\etc\hosts

192.168.179.201 m1
192.168.179.202 m2
192.168.179.203 m3
192.168.179.204 m4
192.168.179.205 m5



----
######1.可以统计浏览器访问:

http://m1:50070
NameNode 'm1:9000' (active)
http://m2:50070
NameNode 'm2:9000' (standby)


---
######2.验证HDFS HA
1. 首先向hdfs上传一个文件

hadoop fs -put /etc/profile /profile


2. 查看是否已上传到HDFS上

hadoop fs -ls /


3. 然后再kill掉active的NameNode

kill -9


4. 通过浏览器访问:http://m2:50070

NameNode 'm2:9000' (active) ## 主机m2上的NameNode变成了active


5. 执行命令:

hadoop fs -ls / ## 看之前在m1上传的文件是否还存在!!!


6. 手动在m1上启动挂掉的NameNode

sbin/hadoop-daemon.sh start namenode


7. 通过浏览器访问:http://m1:50070

NameNode 'm1:9000' (standby)




---
######3.验证YARN:
1. 用浏览器访问: http://m1:8088, 查看是否有NodeManager服务在运行
2. 运行一下hadoop提供的demo中的WordCount程序, 在linux上执行以下命令

hadoop jar /home/centos/soft/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar wordcount InputParameter OutputParameter

####在http://m1:8088 上是否有application在运行,若有则YARN没问题


---
<br>
####OK,大功告成!!!

<br>
<br>
<br>
posted on 2017-02-21 15:05  起风了,唯有努力生存  阅读(617)  评论(0编辑  收藏  举报