单例模式的双重加锁实现
本文从单例模式的一般实现方式开始说起,逐步深入到双重加锁实现。
1. 首先介绍一下最简单的单例模式——饿汉模式,这种方式在单例类被加载的时候实例化。代码实现如下:
1 public class Singleton { 2 private static Singleton instance; 3 4 static { 5 instance = new Singleton(); 6 } 7 8 private Singleton() { 9 } 10 11 public static Singleton getInstance() { 12 return instance; 13 } 14 }
饿汉模式的缺点在于,如果单例对象的创建过程比较耗时,那么应用程序的启动将会比较慢。
2. 为了克服饿汉模式的缺点,将单例对象的创建过程延后到第一次使用单例对象时,这种实现方式被称为懒汉模式。代码实现如下:
1 public class Singleton { 2 private static Singleton instance; 3 4 private Singleton() { 5 } 6 7 public static Singleton getInstance() { 8 if (instance == null) { 9 instance = new Singleton(); 10 } 11 12 return instance; 13 } 14 }
需要注意的是这种实现方式是线程不安全的。假设在单例类被实例化之前,有两个线程同时在获取单例对象,线程1在执行完第8行 if (instance == null) 后,线程调度机制将 CPU 资源分配给线程2,此时线程2在执行第8行 if (instance == null) 时也发现单例类还没有被实例化,这样就会导致单例类被实例化两次。为了防止这种情况发生,需要对 getInstance() 方法同步。下面看改进后的懒汉模式:
1 public class Singleton { 2 private static Singleton instance; 3 4 private Singleton() { 5 } 6 7 // 线程安全的懒汉模式 8 public synchronized static Singleton getInstance() { 9 if (instance == null) { 10 instance = new Singleton(); 11 } 12 13 return instance; 14 } 15 }
3. 双重加锁(double check)
第2种实现方式中,每次获取单例对象时都会加锁,这样就会带来性能损失。双重加锁实现本质也是一种懒汉模式,相比第2种实现方式将会有较大的性能提升。代码实现如下:
1 public class Singleton { 2 private volatile static Singleton instance; 3 4 private Singleton() { 5 } 6 7 public static Singleton getInstance() { 8 if (instance == null) { 9 synchronized (Singleton.class) { 10 if (instance == null) { 11 instance = new Singleton(); 12 } 13 } 14 } 15 16 return instance; 17 } 18 }
就算在单例类被实例化时有多个线程同时通过了第8行代码 if (instance == null) 的判断,但同一时间只有一个线程获得锁后进入临界区。通过第8行判断的每个线程会依次获得锁进入临界区,所以进入临界区后还要再判断一次单例类是否已被其它线程实例化,以避免多次实例化。由于双重加锁实现仅在实例化单例类时需要加锁,所以相较于第2种实现方式会带来性能上的提升。另外需要注意的是双重加锁要对 instance 域加上 volatile 修饰符。由于 synchronized 并不是对 instance 实例进行加锁(因为现在还并没有实例),所以线程在执行完第11行修改 instance 的值后,应该将修改后的 instance 立即写入主存(main memory),而不是暂时存在寄存器或者高速缓冲区(caches)中,以保证新的值对其它线程可见。
补充:第9行可以锁住任何一个对象,要进入临界区必须获得这个对象的锁。由于并不知道其它对象的锁的用途,所以这里最好的方式是对 Singleton.class 进行加锁。