DeepFM——tensorflow代码改编
本人代码库: https://github.com/beathahahaha/tensorflow-DeepFM-master-original
DeepFM原作者代码库: https://github.com/ChenglongChen/tensorflow-DeepFM
解析DeepFM代码 博客推荐:https://mp.weixin.qq.com/s/QrO48ZdP483TY_EnnWFhsQ
为了熟悉该代码的使用,我在example文件夹编写了一个test_1.py文件,可以直接运行
一、定义DeepFM 输入:
需要train.csv(59列,有连续性数值,也有离散型数值,其中多分类都用的0,1,2,3表示),test.csv是kaggle比赛时需要输出的东西,非必要
(参考该数据格式:https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/data?select=train.csv)
二、定义DeepFM 输出:
yy = dfm.predict(Xi_valid_, Xv_valid_) 得到一维np.array,其中数值为float代表概率值
tensorflow 建议1.14 gpu版本
如果自己要DIY的话,要注意哪些地方呢?
答:
1. config.py 里面的设置,和输入数据密切相关,要定义好离散型和连续型的列
2. 喂入的数据格式必须严格统一,注意修改test_1.py 中的列标签名字相关的内容(因此建议使用test_1.py 而不是原作者的main.py)
test_1.py:
import tensorflow as tf from sklearn.metrics import roc_auc_score import os import sys import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.metrics import make_scorer from sklearn.model_selection import StratifiedKFold from sklearn.metrics import accuracy_score import config from metrics import gini_norm from DataReader import FeatureDictionary, DataParser sys.path.append("..") from DeepFM import DeepFM def _load_data(): dfTrain = pd.read_csv(config.TRAIN_FILE) dfTest = pd.read_csv(config.TEST_FILE) cols = [c for c in dfTrain.columns if c not in ["id", "target"]] cols = [c for c in cols if (not c in config.IGNORE_COLS)] X_train = dfTrain[cols].values y_train = dfTrain["target"].values X_test = dfTest[cols].values ids_test = dfTest["id"].values cat_features_indices = [i for i, c in enumerate(cols) if c in config.CATEGORICAL_COLS] return dfTrain, dfTest, X_train, y_train, X_test, ids_test, cat_features_indices def _run_base_model_dfm(dfTrain, dfTest, folds, dfm_params): fd = FeatureDictionary(dfTrain=dfTrain, dfTest=dfTest, numeric_cols=config.NUMERIC_COLS, ignore_cols=config.IGNORE_COLS) data_parser = DataParser(feat_dict=fd) Xi_train, Xv_train, y_train = data_parser.parse(df=dfTrain, has_label=True) Xi_test, Xv_test, ids_test = data_parser.parse(df=dfTest) dfm_params["feature_size"] = fd.feat_dim dfm_params["field_size"] = len(Xi_train[0]) y_train_meta = np.zeros((dfTrain.shape[0], 1), dtype=float) y_test_meta = np.zeros((dfTest.shape[0], 1), dtype=float) _get = lambda x, l: [x[i] for i in l] gini_results_cv = np.zeros(len(folds), dtype=float) gini_results_epoch_train = np.zeros((len(folds), dfm_params["epoch"]), dtype=float) gini_results_epoch_valid = np.zeros((len(folds), dfm_params["epoch"]), dtype=float) for i, (train_idx, valid_idx) in enumerate(folds): # k折交叉,每一折中的fit中,含有epoch轮训练,每一次epoch拆分了batch来喂入 Xi_train_, Xv_train_, y_train_ = _get(Xi_train, train_idx), _get(Xv_train, train_idx), _get(y_train, train_idx) Xi_valid_, Xv_valid_, y_valid_ = _get(Xi_train, valid_idx), _get(Xv_train, valid_idx), _get(y_train, valid_idx) dfm = DeepFM(**dfm_params) dfm.fit(Xi_train_, Xv_train_, y_train_, Xi_valid_, Xv_valid_, y_valid_) # fit中包含对train和valid的评估 yy = dfm.predict(Xi_valid_, Xv_valid_) # print("type(yy):",type(yy)) # print("type(y_valid_):", type(y_valid_)) # print("yy.shape:",yy.shape) #yy : array # print("y_valid_.shape:", y_valid_.shape) #y_valid_ : list #print("yy:", yy) # 原始的predict出来的是概率值 for index in range(len(yy)): if (yy[index] <= 0.5): yy[index] = 0 else: yy[index] = 1 #print("y_valid_:", y_valid_) print("accuracy_score(y_valid_, yy):", accuracy_score(y_valid_, yy)) y_train_meta[valid_idx, 0] = yy y_test_meta[:, 0] += dfm.predict(Xi_test, Xv_test) y_test_meta /= float(len(folds)) return y_train_meta, y_test_meta # params dfm_params = { "use_fm": True, "use_deep": True, "embedding_size": 8, "dropout_fm": [1.0, 1.0], "deep_layers": [32, 32], "dropout_deep": [0.5, 0.5, 0.5], "deep_layers_activation": tf.nn.relu, "epoch": 10, "batch_size": 1024, "learning_rate": 0.001, "optimizer_type": "adam", "batch_norm": 1, "batch_norm_decay": 0.995, "l2_reg": 0.01, "verbose": True, "eval_metric": roc_auc_score, "random_seed": 2017 } dfTrain, dfTest, X_train, y_train, X_test, ids_test, cat_features_indices = _load_data() folds = list(StratifiedKFold(n_splits=config.NUM_SPLITS, shuffle=True, random_state=config.RANDOM_SEED).split(X_train, y_train)) y_train_dfm, y_test_dfm = _run_base_model_dfm(dfTrain, dfTest, folds, dfm_params) print("over") # Xi_train, Xv_train, y_train = prepare(...) # Xi_valid, Xv_valid, y_valid = prepare(...)