[IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2)] -D. Delivery Bears (二分+最大流)
[IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2)] -D. Delivery Bears (二分+最大流)
题面:
题意:
给定一个含有\(\mathit n\)个节点\(\mathit m\)个有向边的图和\(\mathit x\)个工作小熊。保证有一个\(1->n\)的路径。
现在让你选择一个最大的运输总值,满足当这\(\mathit x\)个小熊均分任务后选择一些路径从\(1->n\),使其可以满足
每一个有向边的容量不小于走过该边的小熊的任务总量。
思路:
显然可以在区间\([1e(-6),1e6]\)这个区间去二分出每一个小熊最大的运输任务。
对于check当前二分的数值\(mid\),我们需要用到网络流中的最大流算法,
在原图的基础上将边权\(c_i\)改为\(c_i/mid\)向下取整的结果,跑最大流算法,得出\(1->n\)的最大流量\(res\),
判断\(res\)与\(\mathit x\)的关系即可知道转移的方向。
我才用ISAP算法求最大流:该算法的时间复杂度上限:\(O(E*V^2)\),理想情况:\(O(sqrt(E)*V^2)\)
于是本题的ac代码时间复杂度为\(O(m*n^2*log_2x)\)
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 1000
#define INF 1e15
typedef long long ll;
struct Edge {
int from, to;
ll cap, flow;
};
struct ISAP {
int n, m, s, t;
std::vector<Edge> edges;
std::vector<int> G[N];
bool vis[N];
int d[N], cur[N];
int p[N], num[N];
void addedge(int from, int to, ll cap)
{
edges.push_back((Edge) {from, to, cap, 0});
edges.push_back((Edge) {to, from, 0, cap});
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
void init()
{
memset(d, 0, sizeof(d));
edges.clear();
for (int i = 0; i <= n; ++i) {
G[i].clear();
}
}
ll Augument()
{
ll x = t, a = INF;
while (x != s) {
Edge &e = edges[p[x]];
a = min(a, e.cap - e.flow);
x = edges[p[x]].from;
}
x = t;
while (x != s) {
edges[p[x]].flow += a;
edges[p[x] ^ 1].flow -= a;
x = edges[p[x]].from;
}
return a;
}
void bfs()
{
memset(vis, 0, sizeof(vis));
queue<int> q;
q.push(t);
d[t] = 0;
vis[t] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
int len = G[x].size();
for (int i = 0; i < len; ++i) {
Edge &e = edges[G[x][i]];
if (!vis[e.from] && e.cap > e.flow) {
vis[e.from] = 1;
d[e.from] = d[x] + 1;
q.push(e.from);
}
}
}
}
ll Maxflow(int s, int t)
{
this->s = s;
this->t = t;
ll flow = 0;
bfs();
memset(num, 0, sizeof(num));
for (int i = 0; i < n; ++i) {
num[d[i]]++;
}
int x = s;
memset(cur, 0, sizeof(cur));
while (d[s] < n) {
if (x == t) {
flow += Augument();
x = s;
}
int ok = 0;
for (int i = cur[x]; i < G[x].size(); ++i) {
Edge &e = edges[G[x][i]];
if (e.cap > e.flow && d[x] == d[e.to] + 1) {
ok = 1;
p[e.to] = G[x][i];
cur[x] = i;
x = e.to;
break;
}
}
if (!ok) {
int m = n - 1;
for (int i = 0; i < G[x].size(); ++i) {
Edge &e = edges[G[x][i]];
if (e.cap > e.flow) {
m = min(m, d[e.to]);
}
}
if (--num[d[x]] == 0) {
break;
}
num[d[x] = m + 1]++;
cur[x] = 0;
if (x != s) {
x = edges[p[x]].from;
}
}
}
return flow;
}
} gao;
int n;
int m;
int x;
int a[N], b[N], c[N];
bool check(double mid)
{
int S = 1;
int T = n;
gao.n = T + 1;
for (int i = 1; i <= m; ++i) {
ll num = floor(1.0 * c[i] / mid);
gao.addedge(a[i], b[i], num);
}
int res = gao.Maxflow(S, T);
gao.init();
return res >= x;
}
int main()
{
scanf("%d %d %d", &n, &m, &x);
for (int i = 1; i <= m; ++i) {
scanf("%d %d %d", &a[i], &b[i], &c[i]);
}
double l = 1e-6;
double r = 1000000;
double ans, mid;
for(int rp=1;rp<=100;++rp)
{
mid = (l + r) * 0.5;
if (check(mid)) {
l = mid;
ans = mid;
} else {
r = mid;
}
}
ans*=x;
printf("%.6f\n", ans );
return 0;
}
本博客为本人原创,如需转载,请必须声明博客的源地址。
本人博客地址为:www.cnblogs.com/qieqiemin/
希望所写的文章对您有帮助。