l洛谷P4779 【模板】单源最短路径(标准版)(dijkstra)
题目描述
给定一个 NN 个点,MM 条有向边的带非负权图,请你计算从 SS 出发,到每个点的距离。
数据保证你能从 SS 出发到任意点。
输入格式
第一行为三个正整数 N, M, SN,M,S。 第二行起 MM 行,每行三个非负整数 u_i, v_i, w_iu
i
,v
i
,w
i
,表示从 u_iu
i
到 v_iv
i
有一条权值为 w_iw
i
的边。
输出格式
输出一行 NN 个空格分隔的非负整数,表示 SS 到每个点的距离。
输入输出样例
输入 #1 复制
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
输出 #1 复制
0 2 4 3
说明/提示
样例解释请参考 数据随机的模板题。
1 \leq N \leq 1000001≤N≤100000;
1 \leq M \leq 2000001≤M≤200000;
S = 1S=1;
1 \leq u_i, v_i\leq N1≤u
i
,v
i
≤N;
0 \leq w_i \leq 10 ^ 90≤w
i
≤10
9
,
0 \leq \sum w_i \leq 10 ^ 90≤∑w
i
≤10
9
。
本题数据可能会持续更新,但不会重测,望周知。
2018.09.04 数据更新 from @zzq
链式前向星的模板,可以过本题。第二个代码是vector建图的模板,不卡常的情况下很好使。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb std::ios::sync_with_stdio(false)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define gg(x) getInt(&x)
using namespace std;
typedef long long ll;
inline void getInt(int* p);
/*** TEMPLATE CODE STARTS HERE ***/
const int maxn=100010;
const int MAXM=200000;
// const int INF= 0x3f3f3f3f;
struct Edge
{
int to,next;
ll dist;
Edge(){}
Edge(int tt,ll dd)
{
to=tt;
dist=dd;
}
bool operator < (const Edge x ) const
{
return dist > x.dist;
}
}edge[MAXM];
int head[maxn],tot;
void addedge(int u,int v,ll c)
{
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].dist=c;
head[u] = tot++;
}
priority_queue<Edge> heap;
ll dis[maxn];
int t,n,star;
bool vis[maxn];
void dijkstra (int strat)
{
// memset(dis,INF,sizeof(dis));
repd(i,1,n)
{
dis[i]=1e18;
vis[i]=0;
}
dis[strat]=0;
heap.push(Edge(strat,dis[strat]));
while(!heap.empty())
{
Edge x= heap.top();
heap.pop();
int u=x.to;
if(vis[u])
{
continue;
}
vis[u]=1;
for(int i = head[u];i != -1;i = edge[i].next)
{
Edge now = edge[i];
if(dis[now.to]>x.dist+now.dist)
{
dis[now.to]=x.dist+now.dist;
heap.push(Edge(now.to,dis[now.to]));
}
}
}
}
int main()
{
scanf("%d %d %d",&n,&t,&star);
int a,b,d;
memset(head,-1,sizeof(head));
repd(i,1,t)
{
scanf("%d %d %d",&a,&b,&d);
addedge(a,b,d);
}
dijkstra(star);
repd(i,1,n)
{
printf("%lld ",dis[i]);
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
本博客为本人原创,如需转载,请必须声明博客的源地址。
本人博客地址为:www.cnblogs.com/qieqiemin/
希望所写的文章对您有帮助。