P5200 [USACO19JAN]Sleepy Cow Sorting 牛客假日团队赛6 D 迷路的牛 (贪心)
链接:https://ac.nowcoder.com/acm/contest/993/E
来源:牛客网
对牛排序
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld
题目描述
Farmer John正在尝试将他的N头奶牛(1≤N≤100),方便起见编号为1…N,在她们前往牧草地吃早餐之前排好顺序。
当前,这些奶牛以p1,p2,p3,…,pN的顺序排成一行,Farmer John站在奶牛p1前面。他想要重新排列这些奶牛,使得她们的顺序变为1,2,3,…,N奶牛1在Farmer John旁边。
今天奶牛们有些困倦,所以任何时刻都只有直接面向Farmer John的奶牛会注意听Farmer John的指令。每一次他可以命令这头奶牛沿着队伍向后移动k步,k可以是范围1…N−1中的任意数。她经过的k头奶牛会向前移动,腾出空间使得她能够插入到队伍中这些奶牛之后的位置。
例如,假设N=4,奶牛们开始时是这样的顺序:
FJ: 4, 3, 2, 1
唯一注意FJ指令的奶牛是奶牛4。当他命令她向队伍后移动2步之后,队伍的顺序会变成:
FJ: 3, 2, 4, 1
现在唯一注意FJ指令的奶牛是奶牛3,所以第二次他可以给奶牛3下命令,如此进行直到奶牛们排好了顺序。
Farmer John急欲完成排序,这样他就可以回到他的农舍里享用他自己的早餐了。请帮助他求出将奶牛们排好顺序所需要的最小操作次数。
输入描述:
输入的第一行包含N。
第二行包含N个空格分隔的整数,p1,p2,p3,…,pN,表示奶牛们的起始顺序。
输出描述:
输出一个整数,为Farmer John采用最佳策略可以将这N头奶牛排好顺序所需要的操作次数。
示例1
输入
复制
4
1 2 4 3
输出
复制
3
备注:
题意:
思路:
我们知道,一个编号为x的牛,如果右边有一个牛的编号y使其 y<x 那么这个编号为x的牛肯定是要进行排序的, 那么我们不妨直接找最靠右的满足这个条件的牛。即可
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int a[maxn];
int n;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
repd(i, 1, n) {
cin >> a[i];
}
int ans = 0;
for (int i = n; i >= 1; i--) {
int isok = 0;
for (int j = i + 1; j <= n; ++j) {
if (a[i] > a[j]) {
isok = 1;
}
}
if (isok) {
ans = i;
break;
}
}
cout << ans << endl;
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}