AtCoder Beginner Contest 122 D - We Like AGC (DP)
D - We Like AGC
Time Limit: 2 sec / Memory Limit: 1024 MB
Score : 400400 points
Problem Statement
You are given an integer NN. Find the number of strings of length NN that satisfy the following conditions, modulo 109+7109+7:
- The string does not contain characters other than
A
,C
,G
andT
. - The string does not contain
AGC
as a substring. - The condition above cannot be violated by swapping two adjacent characters once.
Notes
A substring of a string TT is a string obtained by removing zero or more characters from the beginning and the end of TT.
For example, the substrings of ATCODER
include TCO
, AT
, CODER
, ATCODER
and (the empty string), but not
AC
.
Constraints
- 3≤N≤1003≤N≤100
Input
Input is given from Standard Input in the following format:
NN
Output
Print the number of strings of length NN that satisfy the following conditions, modulo 109+7109+7.
Sample Input 1 Copy
3
Sample Output 1 Copy
61
There are 43=6443=64 strings of length 33 that do not contain characters other than A
, C
, G
and T
. Among them, only AGC
, ACG
and GAC
violate the condition, so the answer is 64−3=6164−3=61.
Sample Input 2 Copy
4
Sample Output 2 Copy
230
Sample Input 3 Copy
100
Sample Output 3 Copy
388130742
Be sure to print the number of strings modulo 109+7109+7.
题意:
给你一个数字N,N的范围是3~100
让你求出有多少种可能的字符串,使之只包括这四种字符 A
, C
, G
and T
.
并且字符串不含有“AGC”这个子串,并且仅交换一次相邻的字符也不含有“AGC”这个子串。
思路:
我们根据第一个样例就可以看出N=3的所有情况。
因为我们考虑的是DP的写法,先思考如何定义状态,
我们通过思考可以知道我们从N=3转到N=4的状态的时候,我们要考虑整个字符串的后3个字符才可以确定最后一位能不能加上我们在转移的字符,
那么我们不妨在定义状态的时候就把整个字符串的后3位字符都存下来。
所以我们定义状态如下:
DP[ len ][i] [ j ] [ k ] = 长度为len的字符串中,后三位字符串依次是ijk的字符串有多少种。
这里因为只有四种字母,我们不妨给四个字符进行用数码编号表示,以此来简化我们的程序编写;
我们按照字典序把{'A','C','G','T'}; 编为 0 1 2 3.
那么我们现在从N=4开始考虑,
我们知道以下几种情况是不能满足条件的
后三位是 我们不能接上
*AG C
*AC G
*GA C
A*G C
AG* C
我们只需要在转移的时候,把这5种会产生不符合条件的字符串给删除掉(即不计入计数)
就可以顺利的推出答案了。
具体转移的细节见代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #include <iomanip> #define ALL(x) (x).begin(), (x).end() #define rt return #define dll(x) scanf("%I64d",&x) #define xll(x) printf("%I64d\n",x) #define sz(a) int(a.size()) #define all(a) a.begin(), a.end() #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), '\0', sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define eps 1e-6 #define gg(x) getInt(&x) #define db(x) cout<<"== [ "<<x<<" ] =="<<endl; using namespace std; typedef long long ll; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;} inline void getInt(int* p); const int maxn=1000010; const int inf=0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ int n; const ll mod = 1e9+7ll; ll dp[110][5][5][5]; char c[6]={'A','C','G','T'}; int main() { //freopen("D:\\common_text\\code_stream\\in.txt","r",stdin); //freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); // gbtb*/ cin>>n; string temp="123"; int num=0; // repd(i,0,3) // { // temp[0]=c[i]; // repd(j,0,3) // { // temp[1]=c[j]; // repd(k,0,3) // { // temp[2]=c[k]; // cout<<num++<<" "; // cout<<temp<<endl; // } // } // } // char c[6]={'A','C','G','T'}; repd(i,0,3) { repd(j,0,3) { repd(k,0,3) { dp[3][i][j][k]=1; } } } dp[3][0][1][2]=0; dp[3][0][2][1]=0; dp[3][2][0][1]=0; ll cnt=0ll; repd(len,4,n) { repd(i,0,3) { repd(j,0,3) { repd(k,0,3) { cnt=0ll; repd(ii,0,3) { repd(jj,0,3) { repd(kk,0,3) { //{'A','C','G','T'}; if(jj==i&&kk==j) { if(k==1&&kk==2&&jj==0) { }else if(k==1&&kk==0&&jj==2) { }else if(k==2&&kk==1&&jj==0) { }else if(k==1&&kk==2&&ii==0) { }else if(k==1&&jj==2&&ii==0) { }else { cnt+=dp[len-1][ii][jj][kk]; cnt=(cnt+mod)%mod; } } } } } cnt=(cnt+mod)%mod; dp[len][i][j][k]=cnt; // printf("%d %d %d %lld\n",i,j,k,cnt); } } } } ll ans=0ll; repd(i,0,3) { repd(j,0,3) { repd(k,0,3) { ans+=dp[n][i][j][k]; ans=(ans+mod)%mod; } } } cout<<ans<<endl; return 0; } inline void getInt(int* p) { char ch; do { ch = getchar(); } while (ch == ' ' || ch == '\n'); if (ch == '-') { *p = -(getchar() - '0'); while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 - ch + '0'; } } else { *p = ch - '0'; while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 + ch - '0'; } } }