模型训练-tips

模型冻结部分层的训练方式:

  • 第一步:在训练之前,将除了Embedding之外的层设置为param.requires_grad = False,如下所示:
for name, param in model.named_parameters():
    if "model.embed_tokens" not in name:
        param.requires_grad = False
  • 第二步:在训练的时候,在优化器中添加过滤器filter把requires_grad = False的参数过滤掉,这样在训练的时候,不会更新这些参数,如下所示:
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()))
posted @   15375357604  阅读(149)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程
点击右上角即可分享
微信分享提示