模型训练-tips
模型冻结部分层的训练方式:
- 第一步:在训练之前,将除了
Embedding
之外的层设置为param.requires_grad = False
,如下所示:
for name, param in model.named_parameters():
if "model.embed_tokens" not in name:
param.requires_grad = False
- 第二步:在训练的时候,在优化器中添加过滤器filter把
requires_grad = False
的参数过滤掉,这样在训练的时候,不会更新这些参数,如下所示:
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()))
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程