huggingface-(2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# File model.py
# -*- coding: utf-8 -*-
import torch
import os
from torch import nn
from transformers import BertForSequenceClassification, BertConfig
class BertModel(nn.Module):
    def __init__(self, num_labels):
        super(BertModel, self).__init__()
        self.bert = BertForSequenceClassification.from_pretrained("hfl/chinese-roberta-wwm-ext", num_labels=num_labels)
        self.device = torch.device("cuda")
        for param in self.bert.parameters():
            param.requires_grad = True  # 每个参数都要求梯度,也可以冻结一些层
    def forward(self, batch_seqs, batch_seq_masks, batch_seq_segments, labels):
        loss, logits = self.bert(input_ids = batch_seqs, attention_mask = batch_seq_masks,
                              token_type_ids=batch_seq_segments, labels = labels)[:2]
        probabilities = nn.functional.softmax(logits, dim=-1)
        prob, pre_label = torch.max(probabilities, 1)
        return loss, pre_label, probfrom torch.utils.data import Dataset
from hanziconv import HanziConv
import pandas as pd
import torch
class DataPrecessForCLF(Dataset):
    def __init__(self, bert_tokenizer, df, max_char_len):
       
        self.y = torch.LongTensor(df["id"])
        self.max_seq_len = max_char_len
        df["sentence"] = df["sentence"].apply(lambda i: HanziConv.toSimplified(i))
        self.encoded_inputs = bert_tokenizer(df["sentence"].tolist(), padding="max_length", truncation=True,
                                             max_length=max_char_len, return_tensors="pt")
    def __len__(self):
        return len(self.y)
    def __getitem__(self, idx):
        assert len(self.encoded_inputs["input_ids"][idx]) == len(self.encoded_inputs["attention_mask"][idx]) == len(self.encoded_inputs["token_type_ids"][idx])
        return self.encoded_inputs["input_ids"][idx], self.encoded_inputs["attention_mask"][idx], self.encoded_inputs["token_type_ids"][idx], self.y[idx]
import torch
import torch.nn as nn
import time
from tqdm import tqdm
def validate(model, dataloader):
    model.eval()
    device = model.device
    epoch_start = time.time()
    batch_time_avg = 0.0
    running_loss = 0.0
    correct_preds = 0
     
    for batch_idx, (batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels) in enumerate(dataloader):
        batch_start = time.time()
        seqs, masks, segments, labels = batch_seqs.to(device), batch_seq_masks.to(device), batch_seq_segments.to(
            device), batch_labels.to(device)
        loss, pre_label, prob = model(seqs, masks, segments, labels)
        batch_time_avg += time.time() - batch_start
        running_loss += loss.item()
        correct_preds += (pre_label == labels).sum().item()
    epoch_time = time.time() - epoch_start
    epoch_loss = running_loss / len(dataloader)
    epoch_accuracy = correct_preds / len(dataloader.dataset)
    return epoch_time, epoch_loss, epoch_accuracy
def test(model, dataloader, inference=False):
    model.eval()
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu'# 设备
    time_start = time.time()
    batch_time = 0.0
    correct_preds = 0
    all_prob = []
    all_pred_label = []
    all_labels = []
    # Deactivate autograd for evaluation.
    with torch.no_grad():
        for (batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels) in dataloader:
            batch_start = time.time()
            seqs, masks, segments, labels = batch_seqs.to(device), batch_seq_masks.to(device), batch_seq_segments.to(device), batch_labels.to(device)
            loss, pre_label, prob = model(seqs, masks, segments, labels)
            correct_preds += (pre_label == labels).sum().item()
            batch_time += time.time() - batch_start
            all_prob.extend(prob.cpu().numpy())
            all_pred_label.extend(pre_label.cpu().numpy())
            all_labels.extend(batch_labels)
    batch_time /= len(dataloader)
    total_time = time.time() - time_start
    if inference:
        return all_pred_label, all_prob, total_time
    accuracy = correct_preds / len(dataloader.dataset)
    return batch_time, total_time, accuracy
def train(model, dataloader, optimizer, epoch_number, max_gradient_norm):
    model.train()
    device = model.device
    epoch_start = time.time()
    batch_time_avg = 0.0
    running_loss = 0.0
    correct_preds = 0
    tqdm_batch_iterator = tqdm(dataloader)
    for batch_index, (batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels) in enumerate(tqdm_batch_iterator):
        batch_start = time.time()
        seqs, masks, segments, labels = batch_seqs.to(device), batch_seq_masks.to(device), batch_seq_segments.to(device), batch_labels.to(device)
        optimizer.zero_grad()
        loss, pre_label, prob = model(seqs, masks, segments, labels)
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), max_gradient_norm)
        optimizer.step()
        batch_time_avg += time.time() - batch_start
        running_loss += loss.item()
        correct_preds += (pre_label == labels).sum().item()
        description = "Avg. batch proc. time: {:.4f}s, loss: {:.4f}"\
                      .format(batch_time_avg/(batch_index+1), running_loss/(batch_index+1))
        tqdm_batch_iterator.set_description(description)
    epoch_time = time.time() - epoch_start
    epoch_loss = running_loss / len(dataloader)
    epoch_accuracy = correct_preds / len(dataloader.dataset)
    return epoch_time, epoch_loss, epoch_accuracy# -*- coding: utf-8 -*-
import os
import sys
import torch
from torch import nn
from torch.utils.data import DataLoader
from data import DataPrecessForCLF
from utils import train, validate
from model import BertModel
from transformers import BertTokenizer
from transformers.optimization import AdamW
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import json
from sklearn.model_selection import train_test_split
le = LabelEncoder()
def main(train_file, target_dir,
         epochs=25,
         batch_size=16,
         lr=2e-05,
         patience=5,
         max_char_len=512,
         max_grad_norm=10.0,
         checkpoint=None):
    bert_tokenizer = BertTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext", do_lower_case=True)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu'# 设备
    print(20 * "=", " Preparing for training ", 20 * "=")
    # 保存模型的路径
    if not os.path.exists(target_dir):
        os.makedirs(target_dir)
    # -------------------- Data loading ------------------- #
    data = pd.read_csv(train_file)
    data = data[["sentence", "label"]]
    data["sentence"] = data["sentence"].apply(lambda i: str(i))
    data["label"] = data["label"].apply(lambda i: str(i))
    data["id"] = torch.LongTensor(le.fit_transform(data["label"]))
    label = data[["id", "label"]]
    label = label.drop_duplicates()
    label_dict = {}
    for index, row in label.iterrows():
        label_dict[row["label"]] = row["id"]
    refund_map = dict(sorted(label_dict.items(), key=lambda d: d[0]))
    label_num = len(refund_map)
    with open(target_dir + '/label2id.json', "w", encoding="utf-8") as f:
        json.dump(refund_map, f, ensure_ascii=False, indent=4)
    print("the classification label num is {}".format(label_num))
    # train_dev_split
    df_train, df_dev, y_train, y_test = train_test_split(data, data["label"], test_size=0.2,
                                                    stratify=data["label"], random_state=666)
    df_train.reset_index(inplace=True, drop=True)
    df_dev.reset_index(inplace=True, drop=True)
    print("\t* Loading training data... , dataset size is {}".format(len(df_train)))
    train_data = DataPrecessForCLF(bert_tokenizer, df=df_train, max_char_len=max_char_len)
    train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
    print("\t* Loading validation data... , dataset size is {}".format(len(df_dev)))
    dev_data = DataPrecessForCLF(bert_tokenizer, df=df_dev, max_char_len=max_char_len)
    dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    model = BertModel(label_num).to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
            {
                    'params':[p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
                    'weight_decay':0.01
            },
            {
                    'params':[p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
                    'weight_decay':0.0
            }
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="max",
                                                           factor=0.85, patience=0)
    best_score = 0.0
    start_epoch = 1
    # Data for loss curves plot
    epochs_count = []
    train_losses = []
    valid_losses = []
    # Continuing training from a checkpoint if one was given as argument
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]
        print("\t* Training will continue on existing model from epoch {}...".format(start_epoch))
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        valid_losses = checkpoint["valid_losses"]
     # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy = validate(model, dev_loader)
    print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%".format(valid_loss, (valid_accuracy*100)))
    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training Bert model on device: {}".format(device), 20 * "=")
    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        epochs_count.append(epoch)
        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader, optimizer, epoch, max_grad_norm)
        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%"
              .format(epoch_time, epoch_loss, (epoch_accuracy*100)))
        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = validate(model, dev_loader)
        valid_losses.append(epoch_loss)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
              .format(epoch_time, epoch_loss, (epoch_accuracy*100)))
        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)
        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0
            torch.save({"epoch": epoch,
                        "model": model.state_dict(),
                        "best_score": best_score,
                        "epochs_count": epochs_count,
                        "train_losses": train_losses,
                        "valid_losses": valid_losses},
                        os.path.join(target_dir, "0704_nre.pth.tar"))
        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break
if __name__ == "__main__":
    main(os.path.join(base_path, "model_data/train.csv"),
     os.path.join(base_path, "checkpoint"))

  

复制代码
复制代码

 

复制代码
复制代码

 


  

 

posted @   15375357604  阅读(46)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程
点击右上角即可分享
微信分享提示