huggface

  • padding:将每个sequence填充到指定的最大长度。
  • max_length: 每个sequence的最大长度。本示例中我们使用 10,但对于本文实际数据集,我们将使用 512,这是 BERT 允许的sequence 的最大长度。
  • truncation:如果为True,则每个序列中超过最大长度的标记将被截断。
  • return_tensors:将返回的张量类型。由于我们使用的是 Pytorch,所以我们使用pt;如果你使用 Tensorflow,那么你需要使用tf

  

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
example_text = 'I will watch Memento tonight'
bert_input = tokenizer(example_text,padding='max_length',
                       max_length = 10,
                       truncation=True,
                       return_tensors="pt")
# ------- bert_input ------
print(bert_input['input_ids'])
print(bert_input['token_type_ids'])
print(bert_input['attention_mask'])
 
tensor([[  101,   146120928242508,
         261733568,   102,     0,     0]])
tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]])<br><br><br><br><br># 自带的trainer去训练<br>from transformers import BertForSequenceClassification, BertTokenizerFast<br><br>tokenizer = BertTokenizerFast.from_pretrained(args.pretrain)<br>model = BertForSequenceClassification.from_pretrained(args.pretrain, num_labels=2, output_hidden_states=False)<br><br><br>from transformers import Trainer, TrainingArguments, EarlyStoppingCallback<br>from sklearn.metrics import classification_report, precision_score, \<br>    recall_score, f1_score, accuracy_score, precision_recall_fscore_support<br><br><br>from torch.utils.data import Dataset<br><br><br># 比较关键的是__getitem__方法的处理,这里需要返回一个dict对象,<br># 里面需要包含input_ids, token_tpye_ids, attention_mask, labels四个key<br># (以Bert为例,其他模型可能会有稍许不同,注意这里虽然是单条数据,但是标签的key称为“labels”),然后返回该dict对象即可(即代码示例中的item。<br><br># 数据格式为“text\tlabel”,即文本和标签中间用制表符\t隔开,每行一条数据,形如:<br>#<br># 我的梦想是星辰大海 1<br>#<br># 雄心万丈躺在床上 0<br># 在 __init__初始化方法中读入数据,之后截断至最大设置长度max_len(由于tokenizer会自动补上[CLS]和[SEP],因此这里需要对最大长度做-2处理。<br># 对字符串分割出文本与标签后,使用tokenizer(texts, padding=True, truncation=True, return_tensors='pt')得到Bert所需要的输入encoding(transformers.BatchEncoding对象,<br># encoding.data包含了'input_ids','token_type_ids','attention_mask'三个张量对象,通常情况下在微调任务中不需要进行额外处理),之后将标签转为张量对象就基本完成了数据集初始化流程。<br><br>class MyDataset(Dataset):<br>    def __init__(self, file, tokenizer, max_len=512):<br>        assert os.path.exists(file)<br>        data = open(file, 'r', encoding='utf-8').read().strip().split('\n')<br>        texts = [x.split('\t')[0][:max_len-2] for x in data]<br>        labels = [int(x.split('\t')[1]) for x in data]<br>        self.encodings = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')<br>        self.labels = torch.tensor(labels)<br><br>    def __getitem__(self, idx):<br>        item = {key: val[idx] for key, val in self.encodings.items()}<br>        item['labels'] = self.labels[idx]<br>        return item<br><br>    def __len__(self):<br>        return len(self.labels)<br><br>def compute_metrics(pred):<br>    labels = pred.label_ids<br>    preds = pred.predictions.argmax(-1)<br>    precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')<br>    acc = accuracy_score(labels, preds)<br>    return {<br>        'accuracy': acc,<br>        'f1': f1,<br>        'precision': precision,<br>        'recall': recall<br>    }<br><br>training_args = TrainingArguments(<br>        output_dir=args.save_path,  # 存储结果文件的目录<br>        overwrite_output_dir=True,<br>        num_train_epochs=args.epoch,<br>        per_device_train_batch_size=args.batch_size,<br>        per_device_eval_batch_size=args.batch_size,<br>        learning_rate=1e-5,<br>        eval_steps=500,<br>        load_best_model_at_end=True,<br>        metric_for_best_model="precision",  # 最后载入最优模型的评判标准,这里选用precision最高的那个模型参数<br>        weight_decay=0.01,<br>        warmup_steps=500,<br>        evaluation_strategy="steps",  # 这里设置每100个batch做一次评估,也可以为“epoch”,也就是每个epoch进行一次<br>        logging_strategy="steps",<br>        save_strategy='steps',<br>        logging_steps=100,<br>        save_total_limit=3,<br>        seed=2021,<br>        logging_dir=args.logging_dir  # 存储logs的目录<br>    )<br><br>trainer = Trainer(<br>        model=model,<br>        args=training_args,<br>        train_dataset=train_set,<br>        eval_dataset=valid_set,<br>        tokenizer=tokenizer,<br>        compute_metrics=compute_metrics,<br>        callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],  # 早停Callback<br>    )<br><br>trainer.train()<br>##########################################################################################################################################################<br><br>import transformers
 
tokenizer = transformers.BertTokenizer.from_pretrained('nghuyong/ernie-1.0-base-zh')
model = transformers.ErnieForMaskedLM.from_pretrained('nghuyong/ernie-1.0-base-zh')
input_ids = torch.tensor([tokenizer.encode(text="[MASK][MASK][MASK]是中国神魔小说的经典之作,与《三国演义》《水浒传》《红楼梦》并称为中国古典四大名著。",
                                            add_special_tokens=True)])
model.eval()
with torch.no_grad():
    predictions = model(input_ids)[0][0]
predicted_index = [torch.argmax(predictions[i]).item() for i in range(predictions.shape[0])]
predicted_token = [tokenizer._convert_id_to_token(predicted_index[i]) for i in
                    range(1, (predictions.shape[0] - 1))]
print('predict result:\t', predicted_token)<br><br><br><br><br>import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
 
class Config(object):
 
    def __init__(self):
        self.pre_bert_path="nghuyong/ernie-1.0"
        self.train_path = 'data/dataset_train.csv'  # 训练集
        self.dev_path = 'data/dataset_valid.csv'  # 验证集
        self.test_path = 'data/test.csv'  # 测试集
        self.class_path = 'data/class.json'  # 类别名单
        self.save_path ='mymodel/ernie.pth'        # 模型训练结果
        self.num_classes=10
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')   # 设备
 
        self.epochs = 10  # epoch数
        self.batch_size = 128  # mini-batch大小
        self.maxlen = 32  # 每句话处理成的长度(短填长切)
        self.learning_rate = 5e-4                                       # 学习率
        self.hidden_size=768
        self.tokenizer = AutoTokenizer.from_pretrained(self.pre_bert_path)
 
class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        self.ernie=AutoModel.from_pretrained(config.pre_bert_path)
        #设置不更新预训练模型的参数
        for param in self.ernie.parameters():
            param.requires_grad = False
        self.fc = nn.Linear(config.hidden_size, config.num_classes)
    def forward(self, input):
        out=self.ernie(input_ids =input['input_ids'],attention_mask=input['attention_mask'],token_type_ids=input['token_type_ids'])
        #只取最后一层CLS对应的输出
        out = self.fc(out.pooler_output)
        return outimport json
from mymodel import myBert,myAlbertl,myERNIE
import mydataset
import torch
import pandas as pd
from torch import nn,optim
from torch.utils.data import DataLoader
 
config=myERNIE.Config()
 
label_dict=json.load(open(config.class_path,'r',encoding='utf-8'))
# 加载训练,验证,测试数据集
train_df = pd.read_csv(config.train_path)
#这里将标签转化为数字
train_ds=mydataset.GetLoader(train_df['review'],[label_dict[i] for i in train_df['cat']])
train_dl=DataLoader(train_ds,batch_size=config.batch_size,shuffle=True)
valid_df = pd.read_csv(config.dev_path)
valid_ds=mydataset.GetLoader(valid_df['review'],[label_dict[i] for i in valid_df['cat']])
valid_dl=DataLoader(valid_ds,batch_size=config.batch_size,shuffle=True)
test_df = pd.read_csv(config.test_path)
test_ds=mydataset.GetLoader(test_df['review'],[label_dict[i] for i in test_df['cat']])
test_dl=DataLoader(test_ds,batch_size=config.batch_size,shuffle=True)
 
#计算准确率
def accuracys(pre,label):
    pre=torch.max(pre.data,1)[1]
    accuracy=pre.eq(label.data.view_as(pre)).sum()
    return accuracy,len(label)
 
#导入网络结构
model=myERNIE.Model(config).to(config.device)
 
#训练
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=config.learning_rate)
best_loss=float('inf')
for epoch in range(config.epochs):
    train_acc = []
    for batch_idx,(data,target)in enumerate(train_dl):
        inputs = config.tokenizer(list(data),truncation=True, return_tensors="pt",padding=True,max_length=config.maxlen)
        model.train()
        out = model(inputs)
        loss=criterion(out,target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_acc.append(accuracys(out,target))
        train_r = (sum(tup[0] for tup in train_acc), sum(tup[1] for tup in train_acc))
        print('当前epoch:{}\t[{}/{}]{:.0f}%\t损失:{:.6f}\t训练集准确率:{:.2f}%\t'.format(
            epoch, batch_idx, len(train_dl), 100. * batch_idx / len(train_dl), loss.data,
                   100. * train_r[0].numpy() / train_r[1]
        ))
        #每100批次进行一次验证
        if batch_idx%100==0 and batch_idx!=0:
            model.eval()
            val_acc=[]
            loss_total=0
            with torch.no_grad():
                for (data,target) in valid_dl:
                    inputs = config.tokenizer(list(data), truncation=True, return_tensors="pt", padding=True,
                                              max_length=config.maxlen)
                    out = model(inputs)
                    loss_total = criterion(out, target).data+loss_total
                    val_acc.append(accuracys(out,target))
            val_r = (sum(tup[0] for tup in val_acc), sum(tup[1] for tup in val_acc))
            print('损失:{:.6f}\t验证集准确率:{:.2f}%\t'.format(loss_total/len(valid_dl),100. * val_r[0].numpy() / val_r[1]))
            #如果验证损失低于最好损失,则保存模型
            if loss_total < best_loss:
                best_loss = loss_total
                torch.save(model.state_dict(), config.save_path)
 
#测试
model.load_state_dict(torch.load(config.save_path))
model.eval()
test_acc=[]
with torch.no_grad():
    for (data, target) in test_dl:
        inputs = config.tokenizer(list(data),truncation=True, return_tensors="pt",padding=True,max_length=config.maxlen)
        out = model(inputs)
        test_acc.append(accuracys(out, target))
test_r = (sum(tup[0] for tup in test_acc), sum(tup[1] for tup in test_acc))
 
print('测试集准确率:{:.2f}%\t'.format(100. * test_r[0].numpy() / test_r[1]))# coding=utf-8
import torch
import torchkeras
import torch.nn.functional as F
 
from matplotlib import pyplot as plt
import copy
import datetime
import pandas as pd
from sklearn.metrics import accuracy_score
import math
import time
import sys
 
sys.path.append('/home/xxx/document-level-classification/')
from han.config import *
from han.prepare_data import load_data
 
ngpu = 4
 
use_cuda = torch.cuda.is_available() # 检测是否有可用的gpu
device = torch.device("cuda:0" if (use_cuda and ngpu>0) else "cpu")
print('*'*8, 'device:', device)
 
# 设置损失函数和评价指标
loss_func = torch.nn.CrossEntropyLoss()
metric_func = lambda y_pred, y_true: accuracy_score(y_true, y_pred)
metric_name = 'acc'
df_history = pd.DataFrame(columns=["epoch", "loss", metric_name, "val_loss", "val_"+metric_name])
 
# 打印时间
def printbar():
    nowtime = datetime.datetime.now().strftime('%Y-%m_%d %H:%M:%S')
    print('\n' + "=========="*8 + '%s'%nowtime)
 
class MyHAN(torch.nn.Module):
    def __init__(self, max_word_num, max_sents_num, vocab_size, hidden_size, num_classes, embedding_dim, embedding_matrix=None, dropout_p=0.5):
        super(MyHAN, self).__init__()
 
        self.max_word_num = max_word_num  # 15 句子所含最大词数
        self.max_sents_num = max_sents_num  # 60 文档所含最大句子数
 
        self.embedding_dim = embedding_dim
        self.hidden_size = hidden_size
        self.num_classes = num_classes
        self.dropout_p = dropout_p
 
        self.embedding = torch.nn.Embedding(vocab_size, self.embedding_dim, padding_idx=pad_id)
        if embedding_matrix is not None:
            self.embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))
            for p in self.embedding.parameters():
                p.requires_grad = False
 
        self.dropout0 = torch.nn.Dropout(dropout_p)
 
        # self.layernorm1 = torch.nn.LayerNorm(normalized_shape=(sent_maxlen, embedding_dim), eps=1e-6)
        # self.layernorm2 = torch.nn.LayerNorm(normalized_shape=2*hidden_size, eps=1e-6)
 
        self.bi_rnn1 = torch.nn.GRU(self.embedding_dim, self.hidden_size, bidirectional=True, batch_first=True, dropout=0.2)
        self.word_attn = torch.nn.Linear(self.hidden_size * 2, self.hidden_size)
        self.word_ctx = torch.nn.Linear(self.hidden_size, 1, bias=False)
 
        self.bi_rnn2 = torch.nn.GRU(2 * self.hidden_size, self.hidden_size, bidirectional=True, batch_first=True, dropout=0.2)
        self.sent_attn = torch.nn.Linear(self.hidden_size * 2, self.hidden_size)
        self.sent_ctx = torch.nn.Linear(self.hidden_size, 1, bias=False)
 
        self.dropout = torch.nn.Dropout(dropout_p)
        self.out = torch.nn.Linear(self.hidden_size * 2, self.num_classes)
 
    def forward(self, inputs, hidden1=None, hidden2=None):  # [b, 60, 15]
        embedded = self.dropout0(self.embedding(inputs))  # =>[b, 60, 15, 100]
 
        word_inputs = embedded.view(-1, embedded.size()[-2], embedded.size()[-1])  # =>[b*60, 15, embedding_dim]
        # word_inputs = self.layernorm1(word_inputs)
        self.bi_rnn1.flatten_parameters()
        """
        为了提高内存的利用率和效率,调用flatten_parameters让parameter的数据存放成contiguous chunk(连续的块)。
        类似我们调用tensor.contiguous
        """
        word_encoder_output, hidden1 = self.bi_rnn1(word_inputs,
                                                    hidden1)  # =>[b*60,15,2*hidden_size], [b*60,2,hidden_size]
        word_attn = self.word_attn(word_encoder_output).tanh()  # =>[b*60,15,hidden_size]
        word_attn_energy = self.word_ctx(word_attn)  # =>[b*60,15,1]
        word_attn_weights = F.softmax(word_attn_energy, dim=1).transpose(1, 2# =>[b*60,15,1]=>[b*60,1,15]
        word_att_level_output = torch.bmm(word_attn_weights, word_encoder_output)  # =>[b*60,1,2*hidden_size]
 
        sent_inputs = word_att_level_output.squeeze(1).view(-1, self.max_sents_num,
                                                            2 * self.hidden_size)  # =>[b*60,2*hidden_size]=>[b,60,2*hidden_size]
        self.bi_rnn2.flatten_parameters()
        sent_encoder_output, hidden2 = self.bi_rnn2(sent_inputs, hidden2)  # =>[b,60,2*hidden_size], [b,2,hidden_size]
        sent_attn = self.sent_attn(sent_encoder_output).tanh()  # =>[b,60,hidden_size]
        sent_attn_energy = self.sent_ctx(sent_attn)  # =>[b,60,1]
        sent_attn_weights = F.softmax(sent_attn_energy, dim=1).transpose(1, 2# =>[b,60,1]=>[b,1,60]
        sent_att_level_output = torch.bmm(sent_attn_weights, sent_encoder_output)  # =>[b,1,2*hidden_size]
 
        # logits = self.out(self.dropout(self.layernorm2(sent_att_level_output.squeeze(1))))  # =>[b,2*hidden_size]=>[b,num_classes]
        logits = self.out(self.dropout(sent_att_level_output.squeeze(1)))  # =>[b,2*hidden_size]=>[b,num_classes]
        return logits  # [b,num_classes]
 
def train_step(model, inps, labs, optimizer):
    inps = inps.to(device)
    labs = labs.to(device)
 
    model.train()  # 设置train mode
    optimizer.zero_grad()  # 梯度清零
 
    # forward
    logits = model(inps)
    loss = loss_func(logits, labs)
 
    pred = torch.argmax(logits, dim=-1)
    metric = metric_func(pred.cpu().numpy(), labs.cpu().numpy()) # 返回的是tensor还是标量?
    # print('*'*8, metric)
 
    # backward
    loss.backward()  # 反向传播计算梯度
    optimizer.step()  # 更新参数
 
    return loss.item(), metric.item()
 
@torch.no_grad()
def validate_step(model, inps, labs):
    inps = inps.to(device)
    labs = labs.to(device)
    model.eval()  # 设置eval mode
 
    # forward
    logits = model(inps)
    loss = loss_func(logits, labs)
 
    pred = torch.argmax(logits, dim=-1)
    metric = metric_func(pred.cpu().numpy(), labs.cpu().numpy())  # 返回的是tensor还是标量?
 
    return loss.item(), metric.item()
 
def train_model(model, train_dloader, val_dloader, optimizer, scheduler_1r=None, num_epochs=10, print_every=150):
    starttime = time.time()
    print('*' * 27, 'start training...')
    printbar()
 
    best_metric = 0.
    for epoch in range(1, num_epochs+1):
        # 训练
        loss_sum, metric_sum = 0., 0.
        for step, (inps, labs) in enumerate(train_dloader, start=1):
            loss, metric = train_step(model, inps, labs, optimizer)
            loss_sum += loss
            metric_sum += metric
 
            # 打印batch级别日志
            if step % print_every == 0:
                print('*'*27, f'[step = {step}] loss: {loss_sum/step:.3f}, {metric_name}: {metric_sum/step:.3f}')
 
        # 验证 一个epoch的train结束,做一次验证
        val_loss_sum, val_metric_sum = 0., 0.
        for val_step, (inps, labs) in enumerate(val_dloader, start=1):
            val_loss, val_metric = validate_step(model, inps, labs)
            val_loss_sum += val_loss
            val_metric_sum += val_metric
 
        if scheduler_1r:
            scheduler_1r.step()
 
        # 记录和收集 1个epoch的训练和验证信息
        # columns=['epoch', 'loss', metric_name, 'val_loss', 'val_'+metric_name]
        record = (epoch, loss_sum/step, metric_sum/step, val_loss_sum/val_step, val_metric_sum/val_step)
        df_history.loc[epoch - 1] = record
 
        # 打印epoch级别日志
        print('EPOCH = {} loss: {:.3f}, {}: {:.3f}, val_loss: {:.3f}, val_{}: {:.3f}'.format(
               record[0], record[1], metric_name, record[2], record[3], metric_name, record[4]))
        printbar()
 
        # 保存最佳模型参数
 
        current_metric_avg = val_metric_sum/val_step
        if current_metric_avg > best_metric:
            best_metric = current_metric_avg
            # checkpoint = save_dir + '{:03d}_{:.3f}_ckpt.tar'.format(epoch, current_metric_avg) ############################################################
            checkpoint = save_dir + f'epoch{epoch:03d}_valacc{current_metric_avg:.3f}_ckpt.tar'
            if device.type == 'cuda' and ngpu > 1:
                model_sd = copy.deepcopy(model.module.state_dict())
            else:
                model_sd = copy.deepcopy(model.state_dict())
            # 保存
            torch.save({
                'loss': loss_sum / step,
                'epoch': epoch,
                'net': model_sd,
                'opt': optimizer.state_dict(),
            }, checkpoint)
 
 
    endtime = time.time()
    time_elapsed = endtime - starttime
    print('*' * 27, 'training finished...')
    print('*' * 27, 'and it costs {} h {} min {:.2f} s'.format(int(time_elapsed // 3600),
                                                               int((time_elapsed % 3600) // 60),
                                                               (time_elapsed % 3600) % 60))
 
    print('Best val Acc: {:4f}'.format(best_metric))
    return df_history
 
# 绘制训练曲线
def plot_metric(df_history, metric):
    plt.figure()
 
    train_metrics = df_history[metric]
    val_metrics = df_history['val_' + metric]  #
 
    epochs = range(1, len(train_metrics) + 1)
 
    plt.plot(epochs, train_metrics, 'bo--')
    plt.plot(epochs, val_metrics, 'ro-'#
 
    plt.title('Training and validation ' + metric)
    plt.xlabel("Epochs")
    plt.ylabel(metric)
    plt.legend(["train_" + metric, 'val_' + metric])
 
    plt.savefig(imgs_dir + 'han_'+ metric + '.png'# 保存图片
    plt.show()
 
 
if __name__=='__main__':
    train_dloader = load_data(data_base_dir + 'cnews.train.txt', traindata=True, shuffle=True)
    val_dloader = load_data(data_base_dir + 'cnews.val.txt', traindata=False, shuffle=False)
 
    print('*' * 27, '%d 个 step:' % len(train_dloader))  # 1000 个step/batch
    sample_batch = next(iter(train_dloader))
    print('*'*27, 'sample_batch:', len(sample_batch), sample_batch[0].size(), sample_batch[0].dtype,
          sample_batch[1].size(), sample_batch[1].dtype)  # 4   [b, doc_maxlen] int64
 
 
    model = MyHAN(sent_maxlen, doc_maxlen, total_words+2, hidden_size, num_classes, embedding_dim)
 
    torchkeras.summary(model, input_shape=(doc_maxlen, sent_maxlen), input_dtype=torch.int64)
 
    model = model.to(device)
    if ngpu > 1:
        model = torch.nn.DataParallel(model, device_ids=list(range(ngpu)))  # 设置并行执行  device_ids=[0,1]
 
    model.eval()
    sample_out = model(sample_batch[0])
    print('*' * 10, 'sample_out:', sample_out.shape)  # [b, 10]
 
    params_to_update = []
    for name, param in model.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
 
    optimizer = torch.optim.AdamW(params_to_update, lr=LR, weight_decay=1e-4)
    scheduler_1r = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                     lr_lambda=lambda epoch: 0.1 if epoch>EPOCHS*0.6 else 0.5 if epoch>EPOCHS*0.3 else 1)
    # optimizer = torch.optim.Adam(model.parameters(), lr=LR)
    train_model(model, train_dloader, val_dloader, optimizer, scheduler_1r,
                num_epochs=EPOCHS, print_every=50)
 
    plot_metric(df_history, 'loss')
    plot_metric(df_history, metric_name)# coding=utf-8
import torch
from tqdm import tqdm
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, \
            confusion_matrix, classification_report
import time
import sys
 
sys.path.append('/home/xx/document-level-classification/')
from han.config import *
from han.prepare_data import load_data
from han.train import MyHAN, printbar
 
ngpu = 4
 
use_cuda = torch.cuda.is_available() # 检测是否有可用的gpu
device = torch.device("cuda:0" if (use_cuda and ngpu>0) else "cpu")
print('*'*8, 'device:', device)
 
checkpoint = save_dir + 'epoch007_valacc0.947_ckpt.tar'
 
@torch.no_grad()
def eval_step(model, inps, labs):
    inps = inps.to(device)
    labs = labs.to(device)
 
    model.eval()  # 设置eval mode
 
    # forward
    logits = model(inps)
    pred = torch.argmax(logits, dim=-1)
 
    return pred, labs
 
def evaluate(model, test_dloader):
    starttime = time.time()
    print('*' * 27, 'start evaluating...')
    printbar()
    preds, labels = [], []
    for step, (inps, labs) in enumerate(tqdm(test_dloader), start=1):
        pred, labs = eval_step(model, inps, labs)
        preds.append(pred)
        labels.append(labs)
 
    y_true = torch.cat(labels, dim=0)
    y_pred = torch.cat(preds, dim=0)
    endtime = time.time()
    print('evaluating costs: {:.2f}s'.format(endtime - starttime))
    return y_true.cpu(), y_pred.cpu()
 
def get_metrics(y_true, y_pred):
    if num_classes == 2:
        print('*'*27, 'precision_score:', precision_score(y_true, y_pred, pos_label=1))
        print('*'*27, 'recall_score:', recall_score(y_true, y_pred, pos_label=1))
        print('*'*27, 'f1_score:', f1_score(y_true, y_pred, pos_label=1))
    else:
        average = 'weighted'
        print('*'*27, average+'_precision_score:{:.3f}'.format(precision_score(y_true, y_pred, average=average)))
        print('*'*27, average+'_recall_score:{:.3}'.format(recall_score(y_true, y_pred, average=average)))
        print('*'*27, average+'_f1_score:{:.3f}'.format(f1_score(y_true, y_pred, average=average)))
 
    print('*'*27, 'accuracy:{:.3f}'.format(accuracy_score(y_true, y_pred)))
    print('*'*27, 'confusion_matrix:\n', confusion_matrix(y_true, y_pred))
    print('*'*27, 'classification_report:\n', classification_report(y_true, y_pred))
 
if __name__ == '__main__':
    test_dloader = load_data(data_base_dir + 'cnews.test.txt', traindata=False, shuffle=False)
 
    sample_batch = next(iter(test_dloader))
    print('*' * 27, 'sample_batch:', len(sample_batch), sample_batch[0].size(), sample_batch[0].dtype,
          sample_batch[1].size(), sample_batch[1].dtype)
 
    model = MyHAN(sent_maxlen, doc_maxlen, total_words + 2, hidden_size, num_classes, embedding_dim)
    model = model.to(device)
    if ngpu > 1:
        model = torch.nn.DataParallel(model, device_ids=list(range(ngpu)))  # 设置并行执行  device_ids=[0,1,2,3]
 
    print('*' * 27, 'Loading model weights...')
    # ckpt = torch.load(checkpoint, map_location=device)  # dict  save在CPU 加载到GPU
    ckpt = torch.load(checkpoint)  # dict  save在GPU 加载到 GPU
    model_sd = ckpt['net']
    if device.type == 'cuda' and ngpu > 1:
        model.module.load_state_dict(model_sd)
    else:
        model.load_state_dict(model_sd)
    print('*' * 27, 'Model loaded success!')
 
    y_true, y_pred = evaluate(model, test_dloader)
    get_metrics(y_true, y_pred)# coding=utf-8
import pandas as pd
import re
import jieba
from collections import Counter
from tqdm import tqdm
import pickle
import os
import numpy as np
import torch
import torchtext
import sys
sys.path.append('/home/xx/document-level-classification/')
from han.config import *
 
df_stopwords = pd.read_csv(stopwords_file, index_col=False, quoting=3, sep="\t", names=['stopword'], encoding='utf-8')
STOPWORDS_SET = set(df_stopwords['stopword'].values)
 
# 读取数据  数据格式:content    label
def read_data(filepath):
    df_data = pd.read_csv(filepath, encoding='UTF-8', sep='\t', names=['label', 'content'], index_col=False)
    df_data = df_data.dropna()
    print(df_data.head())
 
    # x_data, y_data = df_data['content'][:100], df_data['label'][:100] # 用于测试功能
    x_data, y_data = df_data['content'], df_data['label']
    print('*'*27, x_data.shape, len(x_data[0]), y_data.shape)  # (50000,) 746 (50000,)
    print(label2id)
    y_data = [label2id[str(y)] for y in y_data]
    # y_data = torch.tensor(y_data, dtype=torch.long)
 
    return x_data, y_data
 
# 保留文本中文、数字、英文、短横线
def clear_text(text):
    p = re.compile(r"[^\u4e00-\u9fa5^0-9^a-z^A-Z\-、,。!?:;()《》【】,!\?:;[\]()]"# 匹配不是中文、数字、字母、短横线的部分字符
    return p.sub('', text)  # 将text中匹配到的字符替换成空字符
 
# 分词
def tokenize(text):
    text = clear_text(text)
    segs = jieba.lcut(text.strip(), cut_all=False# cut_all=False是精确模式,True是全模式;默认模式是False 返回分词后的列表
    segs = filter(lambda x: len(x.strip()) > 1, segs)  # 词长度要>1,没有保留标点符号
 
    global STOPWORDS_SET
    segs = filter(lambda x: x not in STOPWORDS_SET, segs) # 去除停用词 segs是一个filter object
    return list(segs)
 
# 只分句
def do_seg_sentences(doc):
    # sents = re.split(r',|。|!|?|:|;|,|!|\?|:|;', doc)
    sents = re.split(r',|。|!|?|,|!|\?', doc)
    sentences = [s for s in sents if len(s.strip()) != 0]
    return sentences
 
# 过滤低频词
def filter_lowfreq_words(arr, vocab):
    # arr是一个batch,以list的形式出现,list长度=batchsize,list中每个元素是长度=MAX_LEN的句子,句子已经分词,词已经转化为index
    arr = [[x if x < total_words else 0 for x in example] for example in arr]  # 词的ID是按频率降序排序的 <unk>=0
    return arr
 
 
# 顺序:tokenize分词,preprocessing,建立词表build vocab,batch(padding & truncate to maxlen),postprocessing
NESTED = torchtext.data.Field(tokenize=tokenize,
                              sequential=True,
                              fix_length=sent_maxlen,
                              postprocessing=filter_lowfreq_words) # after numericalizing but before the numbers are turned into a Tensor)
TEXT = torchtext.data.NestedField(NESTED,
                            fix_length=doc_maxlen,
                            tokenize=do_seg_sentences,
                            )
LABEL = torchtext.data.Field(sequential=False,
                             use_vocab=False
                             )
 
def get_dataset(inp, lab):
    fields = [('inp', TEXT), ('lab', LABEL)]  # filed信息 fields dict[str, Field])
    examples = []  # list(Example)
    for inp, lab in tqdm(zip(inp, lab)): # 进度条
        # 创建Example时会调用field.preprocess方法
        examples.append(torchtext.data.Example.fromlist([inp, lab], fields))
    return examples, fields
 
class DataLoader:
    def __init__(self, data_iter):
        self.data_iter = data_iter
        self.length = len(data_iter)  # 一共有多少个batch?
 
    def __len__(self):
        return self.length
 
    def __iter__(self):
        # 注意,在此处调整text的shape为batch first,并调整label的shape和dtype
        for batch in self.data_iter:
            yield (batch.inp, batch.lab.long())  # label->long
 
def load_data(data_path, traindata=False, shuffle=False):
    x_data, y_data = read_data(data_path)
 
    ds = torchtext.data.Dataset(*get_dataset(x_data, y_data))
    # 查看1个样本的信息
    print('*'*27, len(ds[0].inp), len(ds[1].inp), ds[0].inp, ds[0].lab) # 还是汉字,还未ID化
 
    if os.path.exists(vocab_path):
        print('词表存在!')
        with open(vocab_path, 'rb') as handle:
            c = pickle.load(handle)
        TEXT.vocab = torchtext.vocab.Vocab(c, max_size=total_words)
        NESTED.vocab = torchtext.vocab.Vocab(c, max_size=total_words)
    else:
        print('词表不存在!')
        TEXT.build_vocab(ds, max_size=total_words)
        with open(vocab_path, 'wb') as handle:  # 可用于infer阶段
            pickle.dump(TEXT.vocab.freqs, handle)
    print('*' * 27, '词表大小:', len(TEXT.vocab))
    print('*' * 27, TEXT.vocab.itos[0])  # <unk>
    print('*' * 27, TEXT.vocab.itos[1])  # <pad>
    print(ds.fields['inp'].vocab.itos[0])
    print(ds.fields['inp'].vocab.itos[1])
 
    ds_iter = torchtext.data.Iterator(ds,
                                      batch_size,
                                      # sort_key=lambda x: len(x.inp),
                                      # device=,
                                      train=traindata,
                                      # repeat=,
                                      shuffle=shuffle,
                                      sort=False,
                                      # sort_within_batch=,
                                      )
    data_loader = DataLoader(ds_iter)
    return data_loader
 
if __name__=='__main__':
    train_dataloader = load_data(data_base_dir + 'cnews.train.txt', traindata=True, shuffle=True)
    val_dataloader = load_data(data_base_dir + 'cnews.val.txt', traindata=False, shuffle=False)
 
    print('*' * 27, 'len(train_dataloader):', len(train_dataloader))  # 1000 个step/batch
    for batch_text, batch_label in train_dataloader:
        print(batch_text.shape, batch_label.shape)  # [b,100,10], [b]
        # print(batch_text[0])
        print(batch_label[0], batch_label[0].dtype)  # tensor(5) torch.int64
        break# coding=utf-8
project_dir = '/home/xijian/pycharm_projects/document-level-classification/'
data_base_dir = project_dir + 'data/thucnews/'
 
save_dir = './save/20210316/'
imgs_dir = './imgs/20210316/'
stopwords_file = project_dir + 'data/zh_data/stopwords.txt'
vocab_path = 'tokenizer/vocab.pkl'
 
labels = ['体育', '娱乐', '家居', '房产', '教育', '时尚', '时政', '游戏', '科技', '财经']
label2id = {l:i for i,l in enumerate(labels)}
id2label = {i:l for i,l in enumerate(labels)}
 
LR = 1e-2
EPOCHS = 15
 
total_words = 6000 # 仅考虑频率最高的6000个词
doc_maxlen = 60 # 每个句子最大长度
sent_maxlen = 15
embedding_dim = 100
 
num_classes = len(labels)
hidden_size = 64
 
pad_token = '<pad>'
pad_id = 1
 
batch_size = 512

train_evl.py

train.py

eval.py

prepare_data.py

config.py

posted @   15375357604  阅读(198)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· DeepSeek在M芯片Mac上本地化部署
点击右上角即可分享
微信分享提示