import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
class Config(object):
def __init__(self):
self.pre_bert_path="nghuyong/ernie-1.0"
self.train_path = 'data/dataset_train.csv' # 训练集
self.dev_path = 'data/dataset_valid.csv' # 验证集
self.test_path = 'data/test.csv' # 测试集
self.class_path = 'data/class.json' # 类别名单
self.save_path ='mymodel/ernie.pth' # 模型训练结果
self.num_classes=10
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
self.epochs = 10 # epoch数
self.batch_size = 128 # mini-batch大小
self.maxlen = 32 # 每句话处理成的长度(短填长切)
self.learning_rate = 5e-4 # 学习率
self.hidden_size=768
self.tokenizer = AutoTokenizer.from_pretrained(self.pre_bert_path)
class Model(nn.Module):
def __init__(self, config):
super(Model, self).__init__()
self.ernie=AutoModel.from_pretrained(config.pre_bert_path)
#设置不更新预训练模型的参数
for param in self.ernie.parameters():
param.requires_grad = False
self.fc = nn.Linear(config.hidden_size, config.num_classes)
def forward(self, input):
out=self.ernie(input_ids =input['input_ids'],attention_mask=input['attention_mask'],token_type_ids=input['token_type_ids'])
#只取最后一层CLS对应的输出
out = self.fc(out.pooler_output)
return out
import json
from mymodel import myBert,myAlbertl,myERNIE
import mydataset
import torch
import pandas as pd
from torch import nn,optim
from torch.utils.data import DataLoader
config=myERNIE.Config()
label_dict=json.load(open(config.class_path,'r',encoding='utf-8'))
# 加载训练,验证,测试数据集
train_df = pd.read_csv(config.train_path)
#这里将标签转化为数字
train_ds=mydataset.GetLoader(train_df['review'],[label_dict[i] for i in train_df['cat']])
train_dl=DataLoader(train_ds,batch_size=config.batch_size,shuffle=True)
valid_df = pd.read_csv(config.dev_path)
valid_ds=mydataset.GetLoader(valid_df['review'],[label_dict[i] for i in valid_df['cat']])
valid_dl=DataLoader(valid_ds,batch_size=config.batch_size,shuffle=True)
test_df = pd.read_csv(config.test_path)
test_ds=mydataset.GetLoader(test_df['review'],[label_dict[i] for i in test_df['cat']])
test_dl=DataLoader(test_ds,batch_size=config.batch_size,shuffle=True)
#计算准确率
def accuracys(pre,label):
pre=torch.max(pre.data,1)[1]
accuracy=pre.eq(label.data.view_as(pre)).sum()
return accuracy,len(label)
#导入网络结构
model=myERNIE.Model(config).to(config.device)
#训练
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=config.learning_rate)
best_loss=float('inf')
for epoch in range(config.epochs):
train_acc = []
for batch_idx,(data,target)in enumerate(train_dl):
inputs = config.tokenizer(list(data),truncation=True, return_tensors="pt",padding=True,max_length=config.maxlen)
model.train()
out = model(inputs)
loss=criterion(out,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc.append(accuracys(out,target))
train_r = (sum(tup[0] for tup in train_acc), sum(tup[1] for tup in train_acc))
print('当前epoch:{}\t[{}/{}]{:.0f}%\t损失:{:.6f}\t训练集准确率:{:.2f}%\t'.format(
epoch, batch_idx, len(train_dl), 100. * batch_idx / len(train_dl), loss.data,
100. * train_r[0].numpy() / train_r[1]
))
#每100批次进行一次验证
if batch_idx%100==0 and batch_idx!=0:
model.eval()
val_acc=[]
loss_total=0
with torch.no_grad():
for (data,target) in valid_dl:
inputs = config.tokenizer(list(data), truncation=True, return_tensors="pt", padding=True,
max_length=config.maxlen)
out = model(inputs)
loss_total = criterion(out, target).data+loss_total
val_acc.append(accuracys(out,target))
val_r = (sum(tup[0] for tup in val_acc), sum(tup[1] for tup in val_acc))
print('损失:{:.6f}\t验证集准确率:{:.2f}%\t'.format(loss_total/len(valid_dl),100. * val_r[0].numpy() / val_r[1]))
#如果验证损失低于最好损失,则保存模型
if loss_total < best_loss:
best_loss = loss_total
torch.save(model.state_dict(), config.save_path)
#测试
model.load_state_dict(torch.load(config.save_path))
model.eval()
test_acc=[]
with torch.no_grad():
for (data, target) in test_dl:
inputs = config.tokenizer(list(data),truncation=True, return_tensors="pt",padding=True,max_length=config.maxlen)
out = model(inputs)
test_acc.append(accuracys(out, target))
test_r = (sum(tup[0] for tup in test_acc), sum(tup[1] for tup in test_acc))
print('测试集准确率:{:.2f}%\t'.format(100. * test_r[0].numpy() / test_r[1]))