MapReduce实现倒排索引

倒排索引

倒排索引"是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。它主要是用来存储某个单词(或词组)在一个文档或一组文档中的存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内容,而是进行相反的操作,因而称为倒排索引(Inverted Index)。

file1:

MapReduce is simple

file2:

MapReduce is powerful is simple

file3:

Hello MapReduce bye MapReduce

样例输出

MapReduce      file1.txt:1;file2.txt:1;file3.txt:2;

is            file1.txt:1;file2.txt:2;

simple           file1.txt:1;file2.txt:1;

powerful      file2.txt:1;

Hello          file3.txt:1;

bye            file3.txt:1;

设计思路

因为需要标识读入的文件名,而文件名与split有关,所以只能在map中写入,通过((FileSplit)context.getInputSplit()).getPath().getName()获取到文件名。

以file3为例

  map端输入: 0 Hello MapReduce bye MapReduce

  map端输出: Hello file3:1   MapReduce file3:1  bye file3:1 MapReduce file3:1

  combiner输入: (Hello,<file3:1>) (MapReduce <file3:1,file3:1>) (bye<file3:1>)

  combiner输出: (Hello,<file3:1>) (MapReduce,<file3:2>) (bye,<file3:1>)

  Reduce输入: (MapReduce,<file3:2,file1:1,file2:1>)

  Reduce输出: (MapReduce,file3:2;file1:1;file2:1)

代码实现

Mapper类

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class MyMapper extends Mapper<LongWritable,Text, Text,Text> {

    private static final Text k = new Text();
    private static final Text v = new Text();
    
    @Override
    protected void map(LongWritable key, Text value,Context context)
            throws IOException, InterruptedException {
        String path = ((FileSplit)context.getInputSplit()).getPath().getName();//获取文件名
        StringTokenizer st = new StringTokenizer(value.toString());
        v.set(path+":1");
        while(st.hasMoreTokens()){
            k.set(st.nextToken());
            context.write(k,v);
        }
    }
}

Combiner类

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MyCombiner extends Reducer<Text, Text, Text, Text> {

    private static final Text v = new Text();
    @Override
    protected void reduce(Text key, Iterable<Text> value,Context context) throws IOException,
            InterruptedException {
        int sum = 0;
        String con = "";
        for(Text val : value){
            String line = val.toString();
            int index = line.indexOf(":");
            con = line.substring(0, index+1);
            String stf = line.substring(index+1);
            sum +=Integer.parseInt(stf);
        }
        v.set(con+sum);
        context.write(key, v);
    }
}

Reducer类

mport java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MyReducer extends Reducer<Text, Text, Text, Text>{

    private static final Text v = new Text();
    @Override
    protected void reduce(Text key, Iterable<Text> value,Context context)
            throws IOException, InterruptedException {
        String str = "";
        for(Text val : value){
            str += val.toString()+";";
        }
        v.set(str);
        context.write(key, v);
    }
}

Job驱动类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class InvertIndex {

    public static void main(String[] args) throws Exception {
        
        Configuration conf = new Configuration();
        
        Job job = new Job(conf,"invert index");
        job.setJarByClass(InvertIndex.class);
        job.setMapperClass(MyMapper.class);
        job.setCombinerClass(MyCombiner.class);
        job.setReducerClass(MyReducer.class);
        
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        
        FileInputFormat.addInputPath(job, new Path("hdfs://127.0.0.1:9000/usr/qqx/invertinput"));
        FileOutputFormat.setOutputPath(job, new Path("hdfs://127.0.0.1:9000/usr/qqx/invertoutput"));
        System.exit(job.waitForCompletion(true)?0:1);

    }
}

 

posted @ 2015-11-22 23:26  丶大雄  阅读(668)  评论(0编辑  收藏  举报