Python并发编程之多线程
目录
一 什么是线程
线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程
车间负责把资源整合到一起,是一个资源单位,而一个车间内至少有一个流水线
流水线的工作需要电源,电源就相当于cpu
所以,进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位。
多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源。
二 线程的创建开销小
三 线程与进程的区别
四 为何要用多线程
-
多线程共享一个进程的地址空间
-
线程比进程更轻量级,线程比进程更容易创建可撤销,在许多操作系统中,创建一个线程比创建一个进程要快10-100倍,在有大量线程需要动态和快速修改时,这一特性很有用
-
若多个线程都是cpu密集型的,那么并不能获得性能上的增强,但是如果存在大量的计算和大量的I/O处理,拥有多个线程允许这些活动彼此重叠运行,从而会加快程序执行的速度。
-
在多cpu系统中,为了最大限度的利用多核,可以开启多个线程,比开进程开销要小的多。(这一条并不适用于python)
五 经典的线程模型
而对一台计算机上多个进程,则共享物理内存、磁盘、打印机等其他物理资源。
多线程的运行也多进程的运行类似,是cpu在多个线程之间的快速切换。
不同的进程之间是充满敌意的,彼此是抢占、竞争cpu的关系,如果迅雷会和QQ抢资源。而同一个进程是由一个程序员的程序创建,所以同一进程内的线程是合作关系,一个线程可以访问另外一个线程的内存地址,大家都是共享的,一个线程干死了另外一个线程的内存,那纯属程序员脑子有问题。
类似于进程,每个线程也有自己的堆栈
不同于进程,线程库无法利用时钟中断强制线程让出CPU,可以调用thread_yield运行线程自动放弃cpu,让另外一个线程运行。
线程通常是有益的,但是带来了不小程序设计难度,线程的问题是:
- 父进程有多个线程,那么开启的子线程是否需要同样多的线程
如果是,那么附近中某个线程被阻塞,那么copy到子进程后,copy版的线程也要被阻塞吗,想一想nginx的多线程模式接收用户连接。
- 在同一个进程中,如果一个线程关闭了问题,而另外一个线程正准备往该文件内写内容呢?
如果一个线程注意到没有内存了,并开始分配更多的内存,在工作一半时,发生线程切换,新的线程也发现内存不够用了,又开始分配更多的内存,这样内存就被分配了多次,这些问题都是多线程编程的典型问题,需要仔细思考和设计。
六 POSIX线程
七 在用户空间实现的线程
用户级线程内核的切换由用户态程序自己控制内核切换,不需要内核干涉,少了进出内核态的消耗,但不能很好的利用多核Cpu,目前Linux pthread大体是这么做的。
在用户空间模拟操作系统对进程的调度,来调用一个进程中的线程,每个进程中都会有一个运行时系统,用来调度线程。此时当该进程获取cpu时,进程内再调度出一个线程去执行,同一时刻只有一个线程执行。
八 在内核空间实现的线程
九 用户级与内核级线程的对比
二: 内核线程的优缺点
优点:
当有多个处理机时,一个进程的多个线程可以同时执行。
缺点:
由内核进行调度。
三: 用户进程的优缺点
优点:
线程的调度不需要内核直接参与,控制简单。
可以在不支持线程的操作系统中实现。
创建和销毁线程、线程切换代价等线程管理的代价比内核线程少得多。
允许每个进程定制自己的调度算法,线程管理比较灵活。
线程能够利用的表空间和堆栈空间比内核级线程多。
同一进程中只能同时有一个线程在运行,如果有一个线程使用了系统调用而阻塞,那么整个进程都会被挂起。另外,页面失效也会产生同样的问题。
缺点:
资源调度按照进程进行,多个处理机下,同一个进程中的线程只能在同一个处理机下分时复用