Python logger模块
1 logging模块简介
logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等;相比print,具备如下优点:
- 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息;
- print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据;logging则可以由开发者决定将信息输出到什么地方,以及怎么输出;
2 logging模块使用
2.1 基本使用
配置logging基本的设置,然后在控制台输出日志,
import logging logging.basicConfig(level = logging.INFO, format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) logger.info( "Start print log" ) logger.debug( "Do something" ) logger.warning( "Something maybe fail." ) logger.info( "Finish" ) |
运行时,控制台输出,
1 2016-10-09 19:11:19,434 - __main__ - INFO - Start print log 2 2016-10-09 19:11:19,434 - __main__ - WARNING - Something maybe fail. 3 2016-10-09 19:11:19,434 - __main__ - INFO - Finish
logging中可以选择很多消息级别,如:DEBUG,INFO,WARNING,ERROR,CRITICAL,通过赋予logger或者handler不同的级别,开发者就可以只输出错误信息到特定的记录文件,或者在调试时只记录调试信息。
将logger的级别改为DEBUG,再观察一下输出结果
1 | logging.basicConfig(level = logging.DEBUG, format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) |
从输出结果可以看到,输出了debug的日志记录
1 2 3 4 | 2016 - 10 - 09 19 : 12 : 08 , 289 - __main__ - INFO - Start print log 2016 - 10 - 09 19 : 12 : 08 , 289 - __main__ - DEBUG - Do something 2016 - 10 - 09 19 : 12 : 08 , 289 - __main__ - WARNING - Something maybe fail. 2016 - 10 - 09 19 : 12 : 08 , 289 - __main__ - INFO - Finish |
1 | logging.basicConfig函数各参数: |
1 2 3 4 5 6 7 8 9 10 11 | filename:指定日志文件名; filemode:和 file 函数意义相同,指定日志文件的打开模式, 'w' 或者 'a' ; format :指定输出的格式和内容, format 可以输出很多有用的信息, datefmt:指定时间格式,同time.strftime(); level:设置日志级别,默认为logging.WARNNING; stream:指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,当stream和filename同时指定时,stream被忽略; |
属性名称
|
格式
|
说明
|
name
|
%(name)s
|
日志的名称
|
asctime
|
%(asctime)s
|
可读时间,默认格式‘2003-07-08 16:49:45,896’,逗号之后是毫秒 |
filename
|
%(filename)s
|
文件名,pathname的一部分 |
pathname
|
%(pathname)s
|
文件的全路径名称
|
funcName
|
%(funcName)s
|
调用日志多对应的方法名
|
levelname
|
%(levelname)s
|
日志的等级
|
levelno
|
%(levelno)s
|
数字化的日志等级
|
lineno
|
%(lineno)d
|
被记录日志在源码中的行数
|
module
|
%(module)s
|
模块名 |
msecs | %(msecs)d | 时间中的毫秒部分 |
process
|
%(process)d
|
进程的ID
|
processName
|
%(processName)s
|
进程的名称
|
thread
|
%(thread)d
|
线程的ID
|
threadName
|
%(threadName)s
|
线程的名称
|
relativeCreated
|
%(relativeCreated)d
|
日志被创建的相对时间,以毫秒为单位
|
2.2 将日志写入到文件
2.2.1 将日志写入到文件
设置logging,创建一个FileHandler,并对输出消息的格式进行设置,将其添加到logger,然后将日志写入到指定的文件中,
1 2 3 4 5 6 7 8 9 10 11 12 13 | import logging logger = logging.getLogger(__name__) logger.setLevel(level = logging.INFO) handler = logging.FileHandler( "log.txt" ) handler.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) handler.setFormatter(formatter) logger.addHandler(handler) logger.info( "Start print log" ) logger.debug( "Do something" ) logger.warning( "Something maybe fail." ) logger.info( "Finish" ) |
log.txt中日志数据为:
2017-07-25 15:02:09,905 - __main__ - INFO - Start print log
2017-07-25 15:02:09,905 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:02:09,905 - __main__ - INFO - Finish
2.2.2 将日志同时输出到屏幕和日志文件
logger中添加StreamHandler,可以将日志输出到屏幕上,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import logging logger = logging.getLogger(__name__) logger.setLevel(level = logging.INFO) handler = logging.FileHandler( "log.txt" ) handler.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) handler.setFormatter(formatter) console = logging.StreamHandler() console.setLevel(logging.INFO) logger.addHandler(handler) logger.addHandler(console) logger.info( "Start print log" ) logger.debug( "Do something" ) logger.warning( "Something maybe fail." ) logger.info( "Finish" ) |
可以在log.txt文件和控制台中看到
2017-07-25 15:03:05,075 - __main__ - INFO - Start print log
2017-07-25 15:03:05,075 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:03:05,075 - __main__ - INFO - Finish
可以发现,logging有一个日志处理的主对象,其他处理方式都是通过addHandler添加进去,logging中包含的handler主要有如下几种,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | handler名称:位置;作用 StreamHandler:logging.StreamHandler;日志输出到流,可以是sys.stderr,sys.stdout或者文件 FileHandler:logging.FileHandler;日志输出到文件 BaseRotatingHandler:logging.handlers.BaseRotatingHandler;基本的日志回滚方式 RotatingHandler:logging.handlers.RotatingHandler;日志回滚方式,支持日志文件最大数量和日志文件回滚 TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滚方式,在一定时间区域内回滚日志文件 SocketHandler:logging.handlers.SocketHandler;远程输出日志到TCP / IP sockets DatagramHandler:logging.handlers.DatagramHandler;远程输出日志到UDP sockets SMTPHandler:logging.handlers.SMTPHandler;远程输出日志到邮件地址 SysLogHandler:logging.handlers.SysLogHandler;日志输出到syslog NTEventLogHandler:logging.handlers.NTEventLogHandler;远程输出日志到Windows NT / 2000 / XP的事件日志 MemoryHandler:logging.handlers.MemoryHandler;日志输出到内存中的指定 buffer HTTPHandler:logging.handlers.HTTPHandler;通过 "GET" 或者 "POST" 远程输出到HTTP服务器 |
2.2.3 日志回滚
使用RotatingFileHandler,可以实现日志回滚,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import logging from logging.handlers import RotatingFileHandler logger = logging.getLogger(__name__) logger.setLevel(level = logging.INFO) #定义一个RotatingFileHandler,最多备份3个日志文件,每个日志文件最大1K rHandler = RotatingFileHandler( "log.txt" ,maxBytes = 1 * 1024 ,backupCount = 3 ) rHandler.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) rHandler.setFormatter(formatter) console = logging.StreamHandler() console.setLevel(logging.INFO) console.setFormatter(formatter) logger.addHandler(rHandler) logger.addHandler(console) logger.info( "Start print log" ) logger.debug( "Do something" ) logger.warning( "Something maybe fail." ) logger.info( "Finish" ) |
可以在工程目录中看到,备份的日志文件,
.3 设置消息的等级
可以设置不同的日志等级,用于控制日志的输出
1 2 3 4 5 6 7 8 | 日志等级:使用范围 FATAL:致命错误 CRITICAL:特别糟糕的事情,如内存耗尽、磁盘空间为空,一般很少使用 ERROR:发生错误时,如IO操作失败或者连接问题 WARNING:发生很重要的事件,但是并不是错误时,如用户登录密码错误 INFO:处理请求或者状态变化等日常事务 DEBUG:调试过程中使用DEBUG等级,如算法中每个循环的中间状态 |
setLevel(lvl) 定义处理log的最低等级,内建的级别为:DEBUG,INFO,WARNING,ERROR,CRITICAL;下图是级别对应数值
2.4 捕获traceback
Python中的traceback模块被用于跟踪异常返回信息,可以在logging中记录下traceback
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import logging logger = logging.getLogger(__name__) logger.setLevel(level = logging.INFO) handler = logging.FileHandler( "log.txt" ) handler.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) handler.setFormatter(formatter) console = logging.StreamHandler() console.setLevel(logging.INFO) logger.addHandler(handler) logger.addHandler(console) logger.info( "Start print log" ) logger.debug( "Do something" ) logger.warning( "Something maybe fail." ) try : open ( "sklearn.txt" , "rb" ) except (SystemExit,KeyboardInterrupt): raise except Exception: logger.error( "Faild to open sklearn.txt from logger.error" ,exc_info = True ) logger.info( "Finish" ) |
控制台和日志文件log.txt中输出

1 2017-07-25 15:04:24,045 - __main__ - INFO - Start print log 2 2017-07-25 15:04:24,045 - __main__ - WARNING - Something maybe fail. 3 2017-07-25 15:04:24,046 - __main__ - ERROR - Faild to open sklearn.txt from logger.error 4 Traceback (most recent call last): 5 File "E:\PYTHON\Eclipse\eclipse\Doc\14day5\Logger模块\Logging.py", line 71, in <module> 6 open("sklearn.txt","rb") 7 IOError: [Errno 2] No such file or directory: 'sklearn.txt' 8 2017-07-25 15:04:24,049 - __main__ - INFO - Finish
也可以使用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),
1 2 3 4 | 将 logger.error( "Faild to open sklearn.txt from logger.error" ,exc_info = True ) 替换为, logger.exception( "Failed to open sklearn.txt from logger.exception" ) |
2.5 多模块使用logging
主模块mainModule.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import logging import subModule logger = logging.getLogger( "mainModule" ) logger.setLevel(level = logging.INFO) handler = logging.FileHandler( "log.txt" ) handler.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) handler.setFormatter(formatter) console = logging.StreamHandler() console.setLevel(logging.INFO) console.setFormatter(formatter) logger.addHandler(handler) logger.addHandler(console) logger.info( "creating an instance of subModule.subModuleClass" ) a = subModule.SubModuleClass() logger.info( "calling subModule.subModuleClass.doSomething" ) a.doSomething() logger.info( "done with subModule.subModuleClass.doSomething" ) logger.info( "calling subModule.some_function" ) subModule.som_function() logger.info( "done with subModule.some_function" ) |
子模块subModule.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import logging module_logger = logging.getLogger( "mainModule.sub" ) class SubModuleClass( object ): def __init__( self ): self .logger = logging.getLogger( "mainModule.sub.module" ) self .logger.info( "creating an instance in SubModuleClass" ) def doSomething( self ): self .logger.info( "do something in SubModule" ) a = [] a.append( 1 ) self .logger.debug( "list a = " + str (a)) self .logger.info( "finish something in SubModuleClass" ) def som_function(): module_logger.info( "call function some_function" ) |
执行之后,在控制和日志文件log.txt中输出

1 2017-07-25 15:05:07,427 - mainModule - INFO - creating an instance of subModule.subModuleClass 2 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - creating an instance in SubModuleClass 3 2017-07-25 15:05:07,427 - mainModule - INFO - calling subModule.subModuleClass.doSomething 4 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - do something in SubModule 5 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - finish something in SubModuleClass 6 2017-07-25 15:05:07,427 - mainModule - INFO - done with subModule.subModuleClass.doSomething 7 2017-07-25 15:05:07,427 - mainModule - INFO - calling subModule.some_function 8 2017-07-25 15:05:07,427 - mainModule.sub - INFO - call function some_function 9 2017-07-25 15:05:07,428 - mainModule - INFO - done with subModule.some_function
说明:
首先在主模块定义了logger'mainModule',并对它进行了配置,就可以在解释器进程里面的其他地方通过getLogger('mainModule')得到的对象都是一样的,不需要重新配置,可以直接使用。定义的该logger的子logger,都可以共享父logger的定义和配置,所谓的父子logger是通过命名来识别,任意以'mainModule'开头的logger都是它的子logger,例如'mainModule.sub'。
实际开发一个application,首先可以通过logging配置文件编写好这个application所对应的配置,可以生成一个根logger,如'PythonAPP',然后在主函数中通过fileConfig加载logging配置,接着在application的其他地方、不同的模块中,可以使用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'来进行log,而不需要反复的定义和配置各个模块的logger。
3 通过JSON或者YAML文件配置logging模块
尽管可以在Python代码中配置logging,但是这样并不够灵活,最好的方法是使用一个配置文件来配置。在Python 2.7及以后的版本中,可以从字典中加载logging配置,也就意味着可以通过JSON或者YAML文件加载日志的配置。
3.1 通过JSON文件配置
JSON配置文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | { "version" : 1 , "disable_existing_loggers" :false, "formatters" :{ "simple" :{ "format" : "%(asctime)s - %(name)s - %(levelname)s - %(message)s" } }, "handlers" :{ "console" :{ "class" : "logging.StreamHandler" , "level" : "DEBUG" , "formatter" : "simple" , "stream" : "ext://sys.stdout" }, "info_file_handler" :{ "class" : "logging.handlers.RotatingFileHandler" , "level" : "INFO" , "formatter" : "simple" , "filename" : "info.log" , "maxBytes" : "10485760" , "backupCount" : 20 , "encoding" : "utf8" }, "error_file_handler" :{ "class" : "logging.handlers.RotatingFileHandler" , "level" : "ERROR" , "formatter" : "simple" , "filename" : "errors.log" , "maxBytes" : 10485760 , "backupCount" : 20 , "encoding" : "utf8" } }, "loggers" :{ "my_module" :{ "level" : "ERROR" , "handlers" :[ "info_file_handler" ], "propagate" : "no" } }, "root" :{ "level" : "INFO" , "handlers" :[ "console" , "info_file_handler" , "error_file_handler" ] } } |
通过JSON加载配置文件,然后通过logging.dictConfig配置logging,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import json import logging.config import os def setup_logging(default_path = "logging.json" ,default_level = logging.INFO,env_key = "LOG_CFG" ): path = default_path value = os.getenv(env_key, None ) if value: path = value if os.path.exists(path): with open (path, "r" ) as f: config = json.load(f) logging.config.dictConfig(config) else : logging.basicConfig(level = default_level) def func(): logging.info( "start func" ) logging.info( "exec func" ) logging.info( "end func" ) if __name__ = = "__main__" : setup_logging(default_path = "logging.json" ) func() |
3.2 通过YAML文件配置
通过YAML文件进行配置,比JSON看起来更加简介明了,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | version: 1 disable_existing_loggers: False formatters: simple: format : "%(asctime)s - %(name)s - %(levelname)s - %(message)s" handlers: console: class : logging.StreamHandler level: DEBUG formatter: simple stream: ext: / / sys.stdout info_file_handler: class : logging.handlers.RotatingFileHandler level: INFO formatter: simple filename: info.log maxBytes: 10485760 backupCount: 20 encoding: utf8 error_file_handler: class : logging.handlers.RotatingFileHandler level: ERROR formatter: simple filename: errors.log maxBytes: 10485760 backupCount: 20 encoding: utf8 loggers: my_module: level: ERROR handlers: [info_file_handler] propagate: no root: level: INFO handlers: [console,info_file_handler,error_file_handler] |
通过YAML加载配置文件,然后通过logging.dictConfig配置logging
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import yaml import logging.config import os def setup_logging(default_path = "logging.yaml" ,default_level = logging.INFO,env_key = "LOG_CFG" ): path = default_path value = os.getenv(env_key, None ) if value: path = value if os.path.exists(path): with open (path, "r" ) as f: config = yaml.load(f) logging.config.dictConfig(config) else : logging.basicConfig(level = default_level) def func(): logging.info( "start func" ) logging.info( "exec func" ) logging.info( "end func" ) if __name__ = = "__main__" : setup_logging(default_path = "logging.yaml" ) func() |
4 Reference
http://wjdadi-gmail-com.iteye.com/blog/1984354
关于 logging 的一些琐事
python logging 重复写日志问题
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 解答了困扰我五年的技术问题
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· DeepSeek 解答了困扰我五年的技术问题。时代确实变了!
· PPT革命!DeepSeek+Kimi=N小时工作5分钟完成?
· What?废柴, 还在本地部署DeepSeek吗?Are you kidding?
· DeepSeek企业级部署实战指南:从服务器选型到Dify私有化落地
· 程序员转型AI:行业分析