摘要: 我们之前接触的所有机器学习算法都有一个共同特点,那就是分类器会接受2个向量:一个是训练样本的特征向量X,一个是样本实际所属的类型向量Y。由于训练数据必须指定其真实分类结果,因此这种机器学习统称为有监督学习。 然而有时候,我们只有训练样本的特征,而对其类型一无所知。这种情况,我们只能让算法尝试在训练数 阅读全文
posted @ 2018-08-29 14:26 钱银 阅读(434) 评论(0) 推荐(0) 编辑
摘要: 每个人都会有这样的经历:当你在电商网站购物时,你会看到天猫给你弹出的“和你买了同样物品的人还买了XXX”的信息;当你在SNS社交网站闲逛时,也会看到弹出的“你可能认识XXX“的信息;你在微博添加关注人时,也会看到“你可能对XXX也感兴趣”;等等。 所有这一切,都是背后的推荐算法运作的结果。最经典的关 阅读全文
posted @ 2018-08-29 14:24 钱银 阅读(1464) 评论(0) 推荐(0) 编辑
摘要: SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集。 SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界):http: 阅读全文
posted @ 2018-08-29 14:20 钱银 阅读(390) 评论(0) 推荐(0) 编辑
摘要: 在本系列文章中提到过用Python机器学习(2)数据拟合与广义线性回归中提到过回归算法来进行数值预测。逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类。实践发现,逻辑回归在文本分类领域表现的也很优秀。现在让我们来一探究竟。 1、逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特 阅读全文
posted @ 2018-08-29 13:58 钱银 阅读(509) 评论(0) 推荐(0) 编辑
摘要: 朴素贝叶斯分类器是一个以贝叶斯定理为基础,广泛应用于情感分类领域的优美分类器。本文我们尝试使用该分类器来解决上一篇文章中影评态度分类。 1、贝叶斯定理 假设对于某个数据集,随机变量C表示样本为C类的概率,F1表示测试样本某特征出现的概率,套用基本贝叶斯公式,则如下所示: 上式表示对于某个样本,特征F 阅读全文
posted @ 2018-08-29 13:48 钱银 阅读(5713) 评论(0) 推荐(0) 编辑
摘要: 基本步骤包括: 1.使用python+selenium分析dom结构爬取百度|互动百科文本摘要信息; 2.使用jieba结巴分词对文本进行中文分词,同时插入字典关于关键词; 3.scikit-learn对文本内容进行tfidf计算并构造N*M矩阵(N个文档 M个特征词); 4.再使用K-means进 阅读全文
posted @ 2018-08-29 13:45 钱银 阅读(19812) 评论(0) 推荐(3) 编辑
摘要: 1、KNN分类算法 KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法。 他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后看这K个样本大部分 阅读全文
posted @ 2018-08-29 13:42 钱银 阅读(838) 评论(0) 推荐(0) 编辑
摘要: 机器学习中的预测问题通常分为2类:回归与分类。 简单的说回归就是预测数值,而分类是给数据打上标签归类。 本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。 本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。拟合的 阅读全文
posted @ 2018-08-29 13:22 钱银 阅读(631) 评论(0) 推荐(0) 编辑
摘要: 1、决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归。不过对于一些特殊的逻辑分类会有困难。典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题。 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题。因此如何构建一棵好的决策树是研究的重点。 J. R 阅读全文
posted @ 2018-08-29 13:16 钱银 阅读(14015) 评论(0) 推荐(0) 编辑