Math-Based Approach on Neural Networks
自变量(Independent variable)一词来自数学。也叫实验刺激(inputs)。——qianxin
Math-Based Approach on Neural Networks
Perceptrons
algebraic terms
with inputs \(x_1, x_2, ...\), weights \(w_1, w_2, ...\), and bias \(b\) is
\[output=\left\{\begin{matrix}
0\ if\ \sum_{j}w_jx_j \le thresold \\
1\ if\ \sum_{j}w_jx_j \gt thresold
\end{matrix}\right.
\]
dot product with bias as thresold
\[output=\left\{\begin{matrix}
0\ if\ w\cdot x+b \le 0 \\
1\ if\ w\cdot x+b \gt 0
\end{matrix}\right.
\]
Sigmoid Neuron
Sigmoid Function
\[\sigma(z) \equiv \frac{1}{1+e^{-z}}
\]
with inputs \(x_1, x_2, ...\), weights \(w_1, w_2, ...\), and bias \(b\) is
\[output \equiv \sigma(z) \equiv \frac{1}{1+e^{-\sum_{j}w_jx_j-b}}
\]
\(\Delta output\)
\[\Delta{output}\approx \sum_{j}\frac{\partial output}{\partial w_j}\Delta{w_j}+\frac{\partial output}{\partial b}\Delta{b}
\]
Gradient descent
Cost function
In this formula, \(y(x) \equiv output\),
\[C(w,b) \equiv \frac{1}{2n}\sum_{x}||y(x)-a||^2
\]
ChangeLog
- 12月28日 12:59 1847年,柯西发明了梯度下降法