一篇代码,机器学习入门

import numpy as np

#将数据降维的函数,输出值一定在-1~1之间,可以定性(男/女)
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def deriv_sigmoid(x):
    fx = sigmoid(x)
    return fx * (1 - fx)

def mse_loss(y_true, y_pred):
    return((y_true - y_pred) ** 2).mean()

#基本神经元,bias即-threshold阈值,即bias越低,越难得出结果,越高越容易(单调递增情况,加10)
class Neuron:
    def __init__(self, weights, bias):
        self.weights = weights
        self.bias = bias
    def feedforward(self, inputs):
        total = np.dot(self.weights, inputs) + self.bias
        return sigmoid(total)

class OurNeuralNetwork:
    def __init__(self):
    ## random weights and biases because it's careless
    ## !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! be mentioned.
        self.w1 = np.random.normal()
        self.w2 = np.random.normal()
        self.w3 = np.random.normal()
        self.w4 = np.random.normal()
        self.w5 = np.random.normal()
        self.w6 = np.random.normal()

    ## Biases
        self.b1 = np.random.normal()
        self.b2 = np.random.normal()
        self.b3 = np.random.normal()

    def feedforward(self, x):
        self.h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
        self.h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
        return sigmoid(self.w5 * self.h1 + self.w6 * self.h2 + self.b3)

    ## Data is a zip of array value
    def train(self, data, all_y_trues):
        learn_rate = 0.1
        # number of times to loop through the entire dataset
        epochs = 1000 

        for epoch in range(epochs):
            for x, y_true in zip(data, all_y_trues):

                y_pred = self.feedforward(x)
                # --- Do a feedforward (we'll need these values later)
                sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
                h1 = sigmoid(sum_h1)

                sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
                h2 = sigmoid(sum_h2)

                sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
                o1 = sigmoid(sum_o1)
                y_pred = o1


                # --- Calculate partial derivatives.
                # --- Naming: d_L_d_w1 represents "partial L / partial w1"
                d_L_d_ypred = -2 * (y_true - y_pred)

                # Neuron o1
                d_ypred_d_w5 = self.h1 * deriv_sigmoid(sum_o1)
                d_ypred_d_w6 = self.h2 * deriv_sigmoid(sum_o1)
                d_ypred_d_b3 = deriv_sigmoid(sum_o1)


                # Neuron o1
                d_ypred_d_w5 = self.h1 * deriv_sigmoid(sum_o1)
                d_ypred_d_w6 = self.h2 * deriv_sigmoid(sum_o1)
                d_ypred_d_b3 = deriv_sigmoid(sum_o1)

                d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
                d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)

                # Neuron h1
                d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
                d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)
                d_h1_d_b1 = deriv_sigmoid(sum_h1)

                # Neuron h2
                d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
                d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)
                d_h2_d_b2 = deriv_sigmoid(sum_h2)

                # --- Update weights and biases
                ## Δv = -n∇C, n 为学习率,∇C为n维向量微分算子,Nabla算子         
                # Neuron h1
                self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
                self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
                self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1

                # Neuron h2
                self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
                self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4
                self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2

                # Neuron o1
                self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
                self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
                self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3
                        
                if epoch % 10 == 0:
                    ## Apply a function to 1-D slices along the given axis.
                    y_preds = np.apply_along_axis(self.feedforward, 1, data)
                    loss = mse_loss(all_y_trues, y_preds)
                    print("Epoch %d loss: %.3f" % (epoch, loss))

data = np.array([
  [-2, -1],  # Alice
  [25, 6],   # Bob
  [17, 4],   # Charlie
  [-15, -6], # Diana
])

all_y_tures = np.array([
  1, # Alice
  0, # Bob
  0, # Charlie
  1, # Diana
]
)

network = OurNeuralNetwork()
network.train(data, all_y_tures)

这是一个经典的logistic regression(即sigmoid回归),优化算法(optimizers, solver)使用SGD,不是最好的算法,但是可以补充

posted @ 2020-09-18 17:40  千心  阅读(203)  评论(0编辑  收藏  举报