数据结构与算法基础
数据结构与算法基础:
顺序存储结构
链式存储结构
什么是树结构?
为什么使用树结构?
树的基本概念
二叉树: 任何一个节点的子节点数量不超过2
二叉树的子节点分左节点和右节点
满二叉树:所有的叶子节点都在最后一层,而且节点总数为2的n次方-1【n是树的高度】
完全二叉树:所有叶子节点都在最后一层或者倒数第二层,且最后一层的叶子节点在左边连续,倒数第二节的叶子节点在右边连续
数组
在程序设计中,为了处理方便, 把具有相同类型的若干变量按有序的形式组织起来。这些按序排列的同类数据元素的集合称为数组。在C语言中, 数组属于构造数据类型。一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。因此按数组元素的类型不同,数组又可分为数值数组、字符数组、指针数组、结构数组等各种类别。
栈
是只能在某一端插入和删除的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。
队列
一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列是按照“先进先出”或“后进后出”的原则组织数据的。队列中没有元素时,称为空队列。
链表
是一种物理存储单元上非连续、非顺序的存储结构,它既可以表示线性结构,也可以用于表示非线性结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。
树
是包含n(n>0)个结点的有穷集合K,且在K中定义了一个关系N,N满足 以下条件:
(1)有且仅有一个结点 K0,他对于关系N来说没有前驱,称K0为树的根结点。简称为根(root)。
(2)除K0外,K中的每个结点,对于关系N来说有且仅有一个前驱。
(3)K中各结点,对关系N来说可以有m个后继(m>=0)。
图
图是由结点的有穷集合V和边的集合E组成。其中,为了与树形结构加以区别,在图结构中常常将结点称为顶点,边是顶点的有序偶对,若两个顶点之间存在一条边,就表示这两个顶点具有相邻关系。
堆
在计算机科学中,堆是一种特殊的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。
散列表
若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。
由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。